
A distributed SQL query engine architecture for data analytics

Aleksei Ozeritskii

Yandex

2023

1 / 33

Contents

Overview
Purpose
Features

AST and Execution plan
AST Transformations
Internal AST representation

Tasks and Stages
Compute Actor
Code isolation

Distributed execution
Scheduler
Microservices and Interconnections

2 / 33

Overview
Purpose
Features

AST and Execution plan
AST Transformations
Internal AST representation

Tasks and Stages
Compute Actor
Code isolation

Distributed execution
Scheduler
Microservices and Interconnections

3 / 33

YQL (Yandex Query Language)

▶ A single entry point for various storage systems
▶ YTSaurus, ClickHouse, YDB

▶ A library for query processing that can be embedded
▶ YDB
▶ Yandex Query (Yandex Cloud service)
▶ YQL (internal Yandex service)

▶ YTSaurus data requests were executed by the Map/Reduce engine

4 / 33

Usage Example

select c_name, sum(o_totalprice) as totalprice from orders

join customer on o_custkey = c_custkey

join nation on n_nationkey = c_nationkey

where n_name = 'INDIA' group by c_name

order by totalprice desc limit 5

5 / 33

User Defined Functions

$f=Python3::f(@@

def f(x):

"""

Callable<(String?)->String?>

"""

return x.upper()

@@);

select name, $f(name) from hahn.`home/yql/tutorial/users`;

6 / 33

Cross Cluster Queries

select a.name, b.lastname, a.age, a.last_time_on_site

from hahn.`home/yql/tutorial/users` as a

left join arnold.`home/yql/tutorial/lastnames` as b

on a.name = b.name1

where a.age < 30

7 / 33

Join Clickhouse and YTSaurus

select yt_visits.age,

count(DISTINCT yt_visits.name),

count(DISTINCT ch_visits.UserID)

from hahn.`home/yql/tutorial/users` as yt_visits

left join (

select UserID,

StartTime,

Age

from clickhousetutorial.`visits_all.visits_v1`

) as ch_visits ON ch_visits.Age = yt_visits.age

group by yt_visits.age;

8 / 33

Map/Reduce: Pros And Cons

Pros

▶ Designed to handle large amounts of data (terabytes and petabytes of data)

Cons

▶ A typical query execution pipeline includes many steps

▶ The result of each step is written to disk

▶ This pipeline becomes less efficient for relatively small amounts of data (100 GB)

▶ Only single cluster queries are supported

9 / 33

Overview
Purpose
Features

AST and Execution plan
AST Transformations
Internal AST representation

Tasks and Stages
Compute Actor
Code isolation

Distributed execution
Scheduler
Microservices and Interconnections

10 / 33

Example

nation
n nationkey

n name
...

customer
c custkey

c name

c nationkey
...

orders
o totalprice

o custkey
...

select c_name, sum(o_totalprice) as totalprice from orders

join customer on o_custkey = c_custkey

join nation on n_nationkey = c_nationkey

where n_name = 'INDIA' group by c_name

order by totalprice desc limit 5

11 / 33

AST

SELECT

attributes:
c name
sum(o totalprice)

where:
n name=’INDIA’

JOIN

orders

o custkey=c custkey
n nationkey=c nationkey

customer nation

GROUP:
c name

ORDER:
totalprice
desc

Sort
totalprice desc

Aggregate
c name

Join
o custkey=c custkey

Join
n nationkey=c nationkey

Scan
customer

Scan
nation

Scan
orders

12 / 33

Relational Operators (s-expressions)

(let $5 '('Inner '('Inner

'"orders" '"c" '('"orders" '"o_custkey") '('"c" '"c_custkey") '())

'"n" '('"c" '"c_nationkey") '('"n" '"n_nationkey") '()))

(let $6 (EquiJoin '('"orders" '"customer" '"nation") $5))
(let $7 (OrderedFilter $6 (lambda '($17) (block '(

(let $18 (SqlColumn $17 '"n_name" '"n"))

(return (Coalesce (== $18 (String '"INDIA")) (Bool 'false))))))))

(let $8 (Apply (lambda '($19 $20) (... AggrAdd $19 $20 ...))

(lambda '($36) (SqlColumn $36 '"o_totalprice"))))

(let $9 (Aggregate $7 '('"c.c_name") '('('"totalprice" $8)) '()))

(Sort (SqlProject $9 '('"c.c_name" '"totalprice")) (Bool 'false)

(lambda '($39) (SqlColumn $39 '"totalprice")))

13 / 33

Relational Operators (s-expressions)

(let $5 '('Inner '('Inner

'"orders" '"c" '('"orders" '"o_custkey") '('"c" '"c_custkey") '())

'"n" '('"c" '"c_nationkey") '('"n" '"n_nationkey") '()))

(let $6 (EquiJoin '('"orders" '"customer" '"nation") $5))
(let $7 (OrderedFilter $6 (lambda '($17) (block '(

(let $18 (SqlColumn $17 '"n_name" '"n"))

(return (Coalesce (== $18 (String '"INDIA")) (Bool 'false))))))))

(let $8 (Apply (lambda '($19 $20) (... AggrAdd $19 $20 ...))

(lambda '($36) (SqlColumn $36 '"o_totalprice"))))

(let $9 (Aggregate $7 '('"c.c_name") '('('"totalprice" $8)) '()))

(Sort (SqlProject $9 '('"c.c_name" '"totalprice")) (Bool 'false)

(lambda '($39) (SqlColumn $39 '"totalprice")))

13 / 33

Map/Reduce Plan

ResultSort

MapReduce:
FlatMap
Top

Map:
MapJoin

Map:
MapJoin

Input: orders

Input: customer

Map: FilterInput: nation

▶ Materializations: 5

▶ Dictionary inputs for MapJoin: ‘customer‘, filtered ‘nation‘

▶ Execution Time: 13:17

14 / 33

Distrubuted Query (DQ) Plan

Stage
Take

Stage
TopSort

Stage
HashJoin

Stage
HashJoin

Stage
Read ‘customers‘

Stage
Read ‘orders‘

Stage
Filter
Read ‘nation‘

▶ Execution Time: 0:36

15 / 33

Distrubuted Query (DQ) Plan (Tasks and Connections)

Stage
Take

1

Stage
TopSort

24

Stage
HashJoin

24
Stage
HashJoin

24

Stage
Read ‘customers‘

9

HashShuffle

Stage
Read ‘orders‘

30

HashShuffle
HashShuffle

Stage
Filter
Read ‘nation‘

1 HashS
huffle

HashShuffle Merge

▶ Split the stages into tasks (Read ‘orders‘ in 30 tasks)

▶ Connect stages by connections (HashShuffle, Merge)

16 / 33

Distrubuted Query (DQ) Plan (Tasks and Connections)

Stage
Take

1

Stage
TopSort

24

Stage
MapJoin

30
Stage
MapJoin

30

Stage

1

Stage
Read ‘customers‘

9

Union

BCast

Stage
Read ‘orders‘

30
Map

Map

Stage

1Stage
Filter
Read ‘nation‘

1
Union

BCa
st

HashShuffle Merge

▶ Empty UnionAll Stages

▶ Broadcast, UnionAll, Map connections

▶ 1:1 split for Map connections

17 / 33

DQ Plan (s-expressions)

(let $11 (DqStage '() (lambda '() (... (DqReadWideWrap ... "orders" ...)))))

(let $14 (DqStage '() (lambda '() (... (DqReadWideWrap ... "customer" ...)))))

(let $17 (DqStage '(

(DqCnHashShuffle (TDqOutput $11 '0) '('"o_custkey")) (DqCnHashShuffle (TDqOutput $14) $13))

(lambda '($46 $47) (... (GraceJoinCore ... $46 $47 ...) ...))))

(let $19 (DqStage '() (lambda '() (OrderedFlatMap ... (DqReadWideWrap ... "nation" ...) ...

(lambda '($68) (OptionalIf (== (Member $68 '"n_name") (String '"INDIA"))

(AsStruct '('"n_nationkey" (Member $68 '"n_nationkey")))))))))

(let $20 (DqStage '(

(DqCnHashShuffle (TDqOutput $17 '0) '('"c.c_nationkey")) (DqCnHashShuffle (TDqOutput $19 '0) $18))

(lambda '($69 $70) (... (GraceJoinCore ... $69 $70 ...) ...))))

(let $22 (DqStage '((DqCnHashShuffle (TDqOutput $20 '0) '('"c_name"))) (lambda '($91) (

(TopSort (FinalizeByKey $91 ...) '5)))))

(DqStage '((DqCnMerge (TDqOutput $22 '0) '('('"totalprice" '"Desc"))))

(lambda '($104) (Take $104 '5)))

18 / 33

DQ Plan (s-expressions)

(let $11 (DqStage '() (lambda '() (... (DqReadWideWrap ... "orders" ...)))))

(let $14 (DqStage '() (lambda '() (... (DqReadWideWrap ... "customer" ...)))))

(let $17 (DqStage '(

(DqCnHashShuffle (TDqOutput $11 '0) '('"o_custkey")) (DqCnHashShuffle (TDqOutput $14) $13))

(lambda '($46 $47) (... (GraceJoinCore ... $46 $47 ...) ...))))

(let $19 (DqStage '() (lambda '() (OrderedFlatMap ... (DqReadWideWrap ... "nation" ...) ...

(lambda '($68) (OptionalIf (== (Member $68 '"n_name") (String '"INDIA"))

(AsStruct '('"n_nationkey" (Member $68 '"n_nationkey")))))))))

(let $20 (DqStage '(

(DqCnHashShuffle (TDqOutput $17 '0) '('"c.c_nationkey")) (DqCnHashShuffle (TDqOutput $19 '0) $18))

(lambda '($69 $70) (... (GraceJoinCore ... $69 $70 ...) ...))))

(let $22 (DqStage '((DqCnHashShuffle (TDqOutput $20 '0) '('"c_name"))) (lambda '($91) (

(TopSort (FinalizeByKey $91 ...) '5)))))

(DqStage '((DqCnMerge (TDqOutput $22 '0) '('('"totalprice" '"Desc"))))

(lambda '($104) (Take $104 '5)))

18 / 33

Connection Types

t1,1

t2,1

h(k)
=
0

t2,2

= 1

t2,3
= 2

t2,4

h(
k)

=
3t1,2

t1,3

Hash Shuffle

t3,1

t4,1

d

t4,2
d

t4,3
d

t4,4

d

Broadcast

t5,1

t6,1

t6,2

t6,3

t6,4

UnionAll

t7,1

t8,1

k
1

t8,2
k2

t8,3
k3

t8,4

k 4

min(ki)

Merge

t9,1 t10,1

t9,2 t10,2

t9,3 t10,3

t9,4 t10,4

Map

ti ,j - Task, i - Stage Id, j - Task Id

19 / 33

Overview
Purpose
Features

AST and Execution plan
AST Transformations
Internal AST representation

Tasks and Stages
Compute Actor
Code isolation

Distributed execution
Scheduler
Microservices and Interconnections

20 / 33

Task, Inputs, Outputs, Sources, Sinks, Channels, Connections

λxy .

Task

Stage

task

Channel
task

task

task

task

Ch
an
ne
lOutput

task

Channel
task

task

task

task

Ch
an
ne
l

Inpu
t

so
u
rc
e sin

k

▶ Task: 0..N Inputs, 0..N Outputs

▶ Inputs: UnionAll, Merge

▶ Outputs: Hash Shuffle, Broadcast,
Map

▶ Channel: task to task

▶ Source: read from (YDB, S3, CH, ...)

▶ Sink: write to (YDB, S3, ...)

21 / 33

Compute Actor (CA), TaskRunner

λxy .

Task

TaskRunner

Compute Actor

CA
Push

CA

Pus
h ▶ CA pushes data to other CA

▶ CA runs TaskRunner on new data

▶ CA gets data from TaskRunner

22 / 33

Actors

SendReceive

▶ Inspired by Akka, Erlang

▶ Processes events in 1 thread

▶ Send(ActorId, Event)

▶ Receive(Event(ActorId, Data))

▶ Become(NewReceiveHandler)

▶ Register(new Actor) -> ActorId

23 / 33

CA and TaskRunner isolation

λxy .

Task

TaskRunner

CA
fd=0,1,2

▶ pipe

▶ fork/exec

▶ dup2

▶ stdin,stdout,stderr

▶ run process in container

24 / 33

User Code Isolation

$f=Python3::f(@@

def f(x):

"""

Callable<(Int32)->Int32>

"""

import ctypes

print(ctypes

.cast(1, ctypes.POINTER(ctypes.c_int))

.contents)

return 0

@@);

select $f(0);

Container killed by signal: 11 (Segmentation fault)

?? at .../b4382c8e-78fcb74c-519140b6-33:0:0

Simple_repr at .../_ctypes.c:4979:12

PyObject_Str at .../object.c:492:11

PyFile_WriteObject at .../fileobject.c:129:17

builtin_print at .../bltinmodule.c:2039:15

cfunction_vectorcall... at .../methodobject.c:443:24

PyObject_Vectorcall at .../pycore_call.h:92:11

_PyEval_EvalFrameDefault at .../ceval.c:0:0

...

25 / 33

Overview
Purpose
Features

AST and Execution plan
AST Transformations
Internal AST representation

Tasks and Stages
Compute Actor
Code isolation

Distributed execution
Scheduler
Microservices and Interconnections

26 / 33

Executer

Tasks Graph Executer

Local Worker Manager

Task,ActorId Local Worker Manager

Task,ActorId

Result

Global Worker Manager

Ta
sks

,N
od
eId

s

▶ Local Worker Manager
▶ Runs on each compute node (CN)
▶ Has known ActorId
▶ Responsible for CA lifetime

27 / 33

Global Worker Manager (Scheduler, GWM)

GWM

CN

P
ing,P

ong

CN

CN

CN

CN

P
in
g,
P
on
g

Tasks,NodeIds

▶ Only 1 GWM per cluster

▶ CN uses YTSaurus to get GWM
address

▶ CN reports via pings
▶ CPU usage
▶ CA count
▶ Other resources (user files, UDFs)

▶ GWM can send commands via pongs
▶ Download file (UDF, user file)
▶ Stop command

28 / 33

Operation Start

User

API

Core Process

Task Process

DQ Process

GRPC

MBus

MBus

HTTP

▶ API
▶ Operation (Start, Stop, Status)
▶ Named Queries
▶ History (View, Search)
▶ ACL

▶ Core Process
▶ Starts Task Process per operation
▶ Communicates with API

▶ Task Process
▶ AST transform and optimize

▶ DQ Process
▶ Starts Executer actor per operation

29 / 33

High Level Architecture

User

API

Core Process

Task Process

DQ Process

GRPC

MBus

MBus

API

Core Process

Task Process

DQ Process
GWM

GRPC

MBus

MBus

Worker

IC

Worker

Job (CN)

Job (CN)

Job (CN)

Job (CN)

IC

IC

IC

IC

Operation (YTSaurus)

30 / 33

New version deploy

API V2

Core Process
V2

Task Process
V2

DQ Process
V2

Core Process
V1

Task Process
V1

DQ Process
V1

CA
V1

TaskRunner
V1

TaskRunner
V2

Job (YTSaurus)

Worker

DQ+GWM
V2

31 / 33

Plans

▶ Vectorization (in progress)

▶ Cost based optimizer (in early progress)

▶ Disk spilling (in early progress)

▶ Reoptimization

32 / 33

Thank You

YDB YTSaurus Actors DQ

aozeritsky@ydb.tech

33 / 33

https://ydb.tech
https://ytsaurus.tech
https://github.com/ydb-platform/ydb/tree/main/library/cpp/actors
https://github.com/ydb-platform/ydb/tree/main/ydb/library/yql/dq
mailto:aozeritsky@ydb.tech

	Overview
	Purpose
	Features

	AST and Execution plan
	AST Transformations
	Internal AST representation

	Tasks and Stages
	Compute Actor
	Code isolation

	Distributed execution
	Scheduler
	Microservices and Interconnections

