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Introduction
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The task is to detect malware traffic
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What is malware?

Avast definition

Malware is an umbrella term for any type of “malicious software” that's designed to
infiltrate your device without your knowledge, cause damage or disruption to your
system, or steal data. Adware, spyware, viruses, botnets, trojans, worms, rootkits, and
ransomware all fall under the definition of malware®

?https://www.avast.com/c-malware

Kaspersky definition
Malware is malicious software that is purposefully designed to cause harm to you or
your device.?

?https://www.kaspersky.com/resource-center/threats/malware-protection
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Malware types
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https:/ /www.avast.com/c-malware
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What is traffic?
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@ Sample is an executable file (x.exe, *.s0, *.dll)
@ Samples network activity can be saved in pcap file

@ Session is a network activity between two IPs
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General data flow pipeline

Traffic parsing

Sandbox

Samlnle,
Peap B Sessions
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Rule based approaches

o Static analysis
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Rule based approaches
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Rule based approaches

o Static analysis
e Dynamic analysis

o Network traffic analysis[1]

o Port based
o DPI based
e Statistics based
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Rule based approaches

o Static analysis
e Dynamic analysis

o Network traffic analysis[1]

Port based

DPI based

Statistics based

Behaviour based, e.g. to identify application (web-server)
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ML based approaches

o Flow based
@ Hybrd (aggregate static, dynamic, behaviour approaches) J
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Pros and cons for rule based approach

@ Direct solving

@ No ML magic, explainable

@ High precision

@ Time to market is very slow

o Constantly needs an infosec expert for rule writing

@ Poor recall

A\
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Pros and cons for ML based approach

Time to market is rather fast

Ideally needs a ML expert only once

High recall and high precision

Can detect zero-days*

Process encrypted traffic*

Needs data

Some ML magic, has issues with explainability

Needs some feature engineering

We will always have FP
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Proposed approach
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Objects & labels
@ Binary classification task: benign vs malicious
@ Object is a tcp session

@ Label can be taken from behaviour, static analysis for either sample or pcap
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Dataset collection
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Dataset collection. Detailed
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Dataset labelling. Garbage in, garbage out
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How we can label sessio

Each pcap can contain benign or malicious sessions

o Based on whole pcap label
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How we can label sessions?

Each pcap can contain benign or malicious sessions

o Based on whole pcap label
Based on Threat Intelligence (malware hosting problem)

°
@ Based on triggered rules (infosec expert problem)
@ Based on IP statistics (tf-idf)

o Pcap is a document. Session is a sentence. Destination ip is a token
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How we can label sessions?

Each pcap can contain benign or malicious sessions

e Based on whole pcap label

@ Based on Threat Intelligence (malware hosting problem)
@ Based on triggered rules (infosec expert problem)
°

Based on IP statistics (tf-idf)

o Pcap is a document. Session is a sentence. Destination ip is a token
e Some ips are present only for a particular family (CnC).
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How we can label sessions?

Each pcap can contain benign or malicious sessions

e Based on whole pcap label

@ Based on Threat Intelligence (malware hosting problem)
@ Based on triggered rules (infosec expert problem)
°

Based on IP statistics (tf-idf)

o Pcap is a document. Session is a sentence. Destination ip is a token
e Some ips are present only for a particular family (CnC).
e Some ips are present for nearly every family (8.8.8.8). High idf
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@ > 700k pcaps. Daily + ~ 5k pcaps
@ > bkk sessions

@ > 150 not normalized family names (rat/redline vs trojan/rat/redline)
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Features

Tcplen features

o Fixed size vector of tcp payload length in bytes. Max vector size is 30 (configurable)

@ Contains packet direction: to server, to client

Pros of simple features

o fast feature calculation (stream processing)
o fast training

o fast inference
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What is a tcplen vector?
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Features

Aggregated tcplen features
@ Define: tcplen — padded tcplen_stat array with zeroes, rcv — array of bytes’ lengths

send to server,
snd — array of bytes' lengths send from server.

o Calculate min, max, mean, std, mode for snd, rcv, tcplen_raw

@ Join bytes in groups based on max MTU

4
General features

@ Session duration in ms

@ Bytes and packets send, recieved and total

A\
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Features distribution
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Features distribution
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Features distribution
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Features distribution
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~ LightGBM

Gradient-boosting
LightGBM is a gradient boosting framework that uses tree based learning algorithms
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Evaluation

@ Perform stratified K-fold cross-validation on base dataset. Save offline metrics to miflow
Calculate permutation importance

Select best features

Tune model hyper-params

Test best n models on future data (4-5 days). Save metrics to miflow

Get the best model

Connect some best models to NAD's broker

Analyze FP per day in grafana
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How much data do we need?

TRAIN DATASET FRACTION VS METRICS ON TEST
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How many packets do we need?

TCPLEN SI2E VS DATAMETRICSFP
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How many packets do we need?

TCPLEN SI2E VS DATAMETRICSFN
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How many fp per day do we have?

@ Network consits of > 1.5k hosts + ~15k servers, vm

@ Daily ~ 30kk sessions

FP| FPR
10 | 0.9999666
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Conclusions
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Main achievements

e Can detect some malware families (~ 5) with low fpr and high precision
@ The use of simple features — better perfomance

@ Proposed approach is general. Can be applied not only for malware detection
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Perspective

@ perform more experiments on recall analysis. New malware family detection
@ integrate into NAD

@ creatre a fully automated pipeline (no need for infosec expert)
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