Malicious traffic detection using Machine Learning

Nikolay Lyfenko ¹

¹Positive Technologies

April 1, 2023

pt

Outline

- Introduction
- Proposed approach
 - Dataset collection and labelling
 - Online evaluation
- Conclusions

Introduction

Task

Task

The task is to detect malware traffic

What is malware?

Avast definition

Malware is an umbrella term for any type of "malicious software" that's designed to infiltrate your device without your knowledge, cause damage or disruption to your system, or steal data. Adware, spyware, viruses, botnets, trojans, worms, rootkits, and ransomware all fall under the definition of malware^a

Kaspersky definition

Malware is malicious software that is purposefully designed to cause harm to you or your device.^a

^ahttps://www.avast.com/c-malware

^ahttps://www.kaspersky.com/resource-center/threats/malware-protection

Malware types

RANSOMWARE

Blackmails you

SPYWARE

Steals your data

ADWARE

Spams you with ads

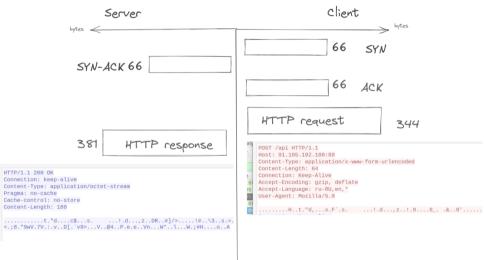
Types of Malware

WORMS

Spread across computers

TROJANS

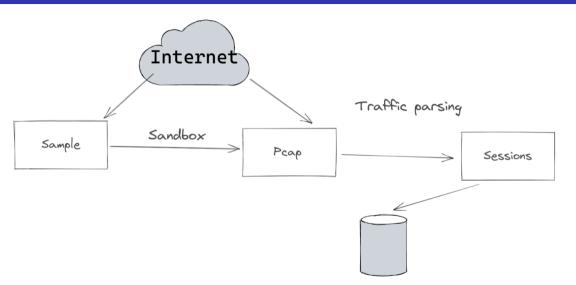
Sneak malware onto your PC


BOTNETS

Turn your PC into a zombie

1

What is traffic?



Definitions

Objects

- Sample is an executable file (*.exe, *.so, *.dll)
- Samples network activity can be saved in pcap file
- Session is a network activity between two IPs

General data flow pipeline

Static analysis

- Static analysis
- Dynamic analysis

- Static analysis
- Dynamic analysis
- Network traffic analysis[1]

- Static analysis
- Dynamic analysis
- Network traffic analysis[1]
 - Port based

- Static analysis
- Dynamic analysis
- Network traffic analysis[1]
 - Port based
 - DPI based

- Static analysis
- Dynamic analysis
- Network traffic analysis[1]
 - Port based
 - DPI based
 - Statistics based

- Static analysis
- Dynamic analysis
- Network traffic analysis[1]
 - Port based
 - DPI based
 - Statistics based
 - Behaviour based, e.g. to identify application (web-server)

ML based approaches

- Flow based
- Hybrd (aggregate static, dynamic, behaviour approaches)

Pros and cons for rule based approach

Pros

- Direct solving
- No ML magic, explainable
- High precision

Cons

- Time to market is very slow
- Constantly needs an infosec expert for rule writing
- Poor recall

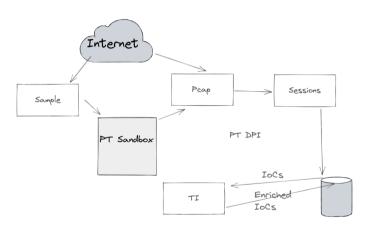
Pros and cons for ML based approach

Pros

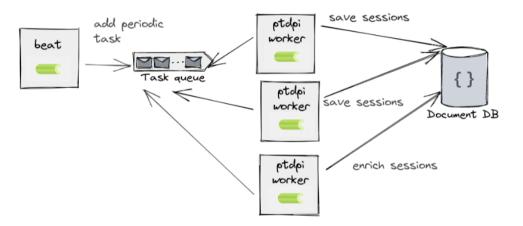
- Time to market is rather fast
- Ideally needs a ML expert only once
- High recall and high precision
- Can detect zero-days*
- Process encrypted traffic*

Cons

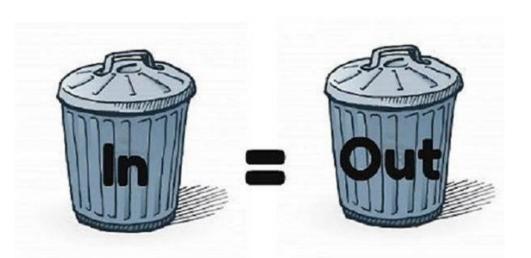
- Needs data
- Some ML magic, has issues with explainability
- Needs some feature engineering
- We will always have FP


Proposed approach

ML task


Objects & labels

- Binary classification task: benign vs malicious
- Object is a tcp session
- Label can be taken from behaviour, static analysis for either sample or pcap


Dataset collection

Dataset collection. Detailed

Dataset labelling. Garbage in, garbage out

Each pcap can contain benign or malicious sessions

• Based on whole pcap label

- Based on whole pcap label
- Based on Threat Intelligence (malware hosting problem)

- Based on whole pcap label
- Based on Threat Intelligence (malware hosting problem)
- Based on triggered rules (infosec expert problem)

- Based on whole pcap label
- Based on Threat Intelligence (malware hosting problem)
- Based on triggered rules (infosec expert problem)
- Based on IP statistics (tf-idf)

- Based on whole pcap label
- Based on Threat Intelligence (malware hosting problem)
- Based on triggered rules (infosec expert problem)
- Based on IP statistics (tf-idf)
 - Pcap is a document. Session is a sentence. Destination ip is a token

- Based on whole pcap label
- Based on Threat Intelligence (malware hosting problem)
- Based on triggered rules (infosec expert problem)
- Based on IP statistics (tf-idf)
 - Pcap is a document. Session is a sentence. Destination ip is a token
 - Some ips are present only for a particular family (CnC).

- Based on whole pcap label
- Based on Threat Intelligence (malware hosting problem)
- Based on triggered rules (infosec expert problem)
- Based on IP statistics (tf-idf)
 - Pcap is a document. Session is a sentence. Destination ip is a token
 - Some ips are present only for a particular family (CnC).
 - Some ips are present for nearly every family (8.8.8.8). High idf

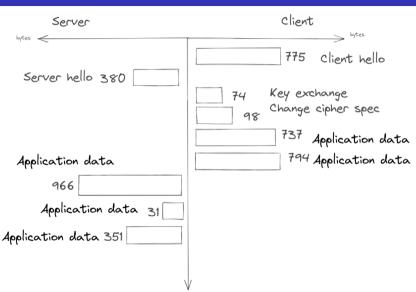
Data

Stats

- \geq 700k pcaps. Daily $+ \sim 5k$ pcaps
- > 5kk sessions
- \geq 150 not normalized family names (rat/redline vs trojan/rat/redline)

Features

Tcplen features


- Fixed size vector of tcp payload length in bytes. Max vector size is 30 (configurable)
- Contains packet direction: to server, to client

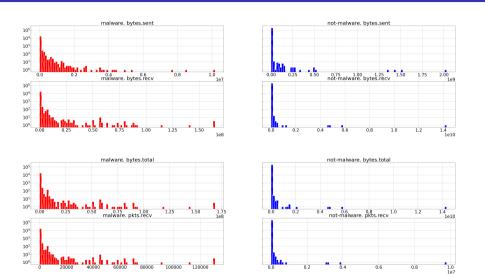
Pros of simple features

- fast feature calculation (stream processing)
- fast training
- fast inference

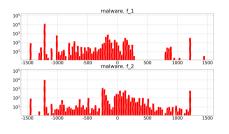
What is a tcplen vector?

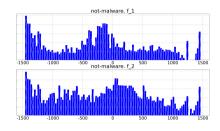
Features

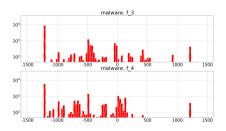
Aggregated tcplen features

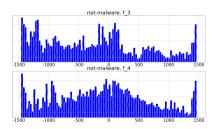

- Define: tcplen padded tcplen_stat array with zeroes, rcv array of bytes' lengths send to server,
 snd array of bytes' lengths send from server.
- Calculate min, max, mean, std, mode for snd, rcv, tcplen_raw
- Join bytes in groups based on max MTU

General features

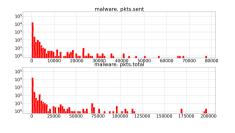

- Session duration in ms
- Bytes and packets send, recieved and total

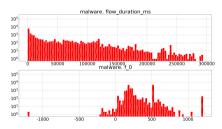


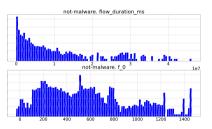

Features distribution



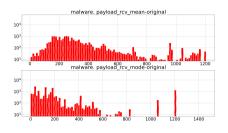
Features distribution

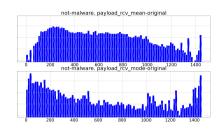


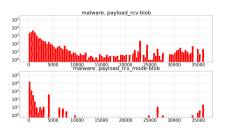


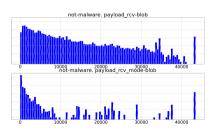


Features distribution









Features distribution

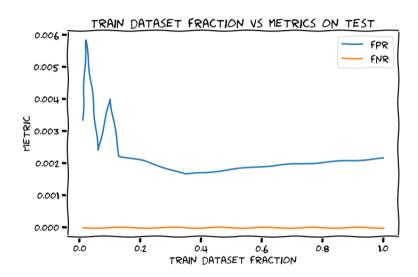
ML model

Gradient-boosting

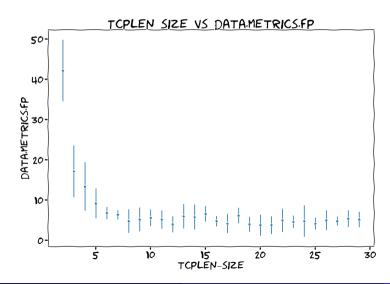
LightGBM is a gradient boosting framework that uses tree based learning algorithms

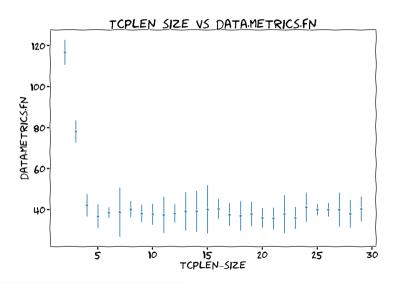
Evaluation

Offline


- Perform stratified K-fold cross-validation on base dataset. Save offline metrics to mlflow
- Calculate permutation importance
- Select best features
- Tune model hyper-params
- Test best n models on future data (4–5 days). Save metrics to mlflow
- Get the best model

Online


- Connect some best models to NAD's broker
- Analyze FP per day in grafana


How much data do we need?

How many packets do we need?

How many packets do we need?

How many fp per day do we have?

FPR vs FP

- Network consits of ≥ 1.5 k hosts $+ \sim 15$ k servers, vm
- ullet Daily \sim 30kk sessions

FP	FPR
10	0.9999666

Conclusions

Main achievements

- ullet Can detect some malware families (\sim 5) with low fpr and high precision
- ullet The use of simple features o better perfomance
- Proposed approach is general. Can be applied not only for malware detection

Perspective

To do

- perform more experiments on recall analysis. New malware family detection
- integrate into NAD
- creatre a fully automated pipeline (no need for infosec expert)

References I

E. W. Biersack, C. Callegari, and M. Matijasevic. Data traffic monitoring and analysis. In *Lecture Notes in Computer Science*, 2013.