JavaScript
KaK KOHCTPYKTOPp
6e30rnacHoro i3bika

BukTtop

- SafeCode
BepLwiaHckumu % 2024

<d wentout

FIEE HEE 1

3

BukTtop

A wentout

Bio

» JS B npoaakiieH 1999
 Back-End Ha JS B 2000
» Node.js ¢ 2009

» Diagnostics Group

» BUGs Chrome & v8

* PhD in Economy of IT
+ PMI PMBoK + Agile

O YéM byaeT ATHU pedb

® KOHTEKCT NMOCTaHOBKU 3a/a4u
e (hopMyIMpoBKa NpobaemMaTuku
® acrnekTbl, cneundPuyHble B JS
® KaK MOrYyT BbIMrMA4EeTb peLleHUS

® MpaKTU4ecKune npumMepbil

I4

KOHTEKCT

KOHTEKCT

null is not a mistake

my apologies to Sir Charles Antony Richard Hoare

typeof null is also good

to my apologies to Brendan Eich

: ":’
- _ -y

» : -

» . .
» r'. ‘ -
. - e - v
. -
\..‘ by P, :
. /" : : . :
‘%ﬂav 3

mnsie IPT EVERVWHER

Disclaimer npo
O)KuplaHMﬂ

@;&U@@UW

JAURSCRIPRRUERVUHERE .

| EEE 14

: ":’
- _ -y

» : -

» . .
» r'. ‘ -
. - e - v
. -
\..‘ by P, :
. /" : : . :
‘%ﬂav 3

mnsie IPT EVERVWHER

NPUCTYNUM ...

FIER HBEE 16

I HER 17

@ JavaScript: The World's Most X +

< (& @® Not secure | crockford.com/javascript/javascript.htm

JavaScript:

The World's Most Misunderstood
Programming LLanguage

Douglas Crockford

www.crockford. com

JavaScript, aka Mocha, aka LiveScript, aka JScript, aka ECMAScript, is one of the world's most
popular programming languages. Virtually every personal computer in the world has at least one
JavaScript interpreter installed on i1t and 1n active use. JavaScript's popularity i1s due entirely to its
role as the scripting language of the WWW.

Despite its popularity, few know that JavaScript is a very nice dynamic object-oriented general-
purpose programming language. How can this be a secret? Why 1s this language so misunderstood?

BrendanEich & N BCE 3TO OOBLEKThHI
@BrendanEich
Replying to @BrendanEich @rauschma and @IndieScripter

If | didn't have "Make it look like Java" as an order
from management, *and* | had more time (hard to
unconfound these two causal factors), then | would
have preferred a Self-like "everything's an object”
approach: no Boolean, Number, String wrappers. No
undefined and null. Sigh.

—~ HEN

HO OHM BCe paBHO ee A0-
HanpuayMbiBanum ...

Bl HEER 20

TC39

Ecma International's TC39 is a group of JavaScript
developers, implementers, academics, and more,
collaborating with the community to maintain
and evolve the definition of JavaScript.

We are part of

ecmad

Contribute

State of Proposals

Specifying JavaScript.

Contribute

TC39 welcomes contributions from the JavaScript
community, whether it is feedback on existing
proposals, improved documentation, testing,

implementations, or even language feature ideas.

See our contributor guide for details.

To participate in TC39 meetings as a member,
join Ecma.

Specs

We develop the JavaScript (formally, ECMAScript)
specification on GitHub and meet every two
months to discuss proposals. To learn more

about the process, please take a look at the six
stages for new language feature proposals. See

our meeting agendas and minutes to learn
more.

NnpakKTU4YeCcKUu npumep
KOHCTPYUpOBaHUSA

Bl EER 20

S W N -2 O 000N U B W N -

class MyArray {

CONSTLIRUCTOR (.. -args)«
const-pre-=-new-Array(...args),
Object.setPrototypeOf(this, -new-Proxy(pre, - {

getrc(targec,prop) 4
prop-=-prop.replace('_', - "'");
feturn-pres| spropsl;

' })).
- }
}
-
const -myArray-=-new-MyArray(1, -2, 3),
console.log(myArray._0); o
B

BIE= HEEE 23

N elle OAUH NOYTH
ybeauTebHbIN
pabounu npumep

I HER 25

npobésiemaTuKa

npobésiemaTuKa

£

FIEE HER 27

® KOHTEKCT MOCTAaHOBKM 3a4aun
e (OPMYNMPOBKaA NPOBGNEMATUKM

e KakK co3paeTcs Koa ANs pelleHus

BIE= HEE 28

| | | | | | | | v.'
s00 | AN J\"-whavw"\f“'”"“w\wm‘f‘ l\/\,f'w,-“\ﬁf\,«'m AJ\/LVMJ wW\f.‘«w*.NJVJWWM/WWw’\J TN
P\

09:00 09:30 10:00 10:30 11:00 11:30 12:00 12:30 13:00 13:30 14:00 14:30

w= gecepted == active == handled == reading == requests == waiting == writing == webscore accepted = webscore active == webscore handled == webscore reading

== Webscore requests webscore waiting webscore writing

w Server Requests
20K ——
1.5K
rox IR | PPN PR O VY 1 VN VLV PPPRY WA Y Y LT Y PO ‘.,n
soo | | | ‘

09:00 09:30 10:00 10:30 11:00 11:30 12:00 12:30 13:00 13:30 14:00 14:30

we 1xx Total: 0 == 2xx Total: 340811 K == 3xx Total: 12.823 K == 4xx Total: 3.973 K == 5xx Total 125

% Request/ms

| | |

|
|
L

|
0ms ““L A ANV et A v ' : i WASLTARY, LLL&AJLLLI

09:00 09:30 10:00 10:30 11:00 11:30 12:00 12:30 13:00 13:30 14:00 14:30
= Max Max: 2.237s Avg: 141 ms == Avg Max: 105 ms Avg: 8 ms

Server Cache

zo\‘l‘)il ; Il | . | - |

0

09:00 09:30 10:00 10:30 11:00 11:30 12:00 12:30 13:00 13:30 14:00 14:30

= Dypass w= expired w== hit == miss == revalidated == scarce == stale == updating

Upstream Requests
100

25

Saddos

09:00 09:30 10:00 10:30 11:00 11:30 12:00 12:30 13:00 13:30 14:00 14:30

0 PEED SN e R
w—TXX s 2XX w— 3XX we 4XX e SXX

Upstream res/ms [6e3 koHBepTepa u ckanepal

40s
30s
20s
1.0s
0Oms N P et — ~ . :
09:00 09:30 10:00 10:30 11:00 11:30 12:00 12:30 13:00 13:30 14:00 14:30

== Max upstream response ms Max: 1.922s Avg:317 ms == avg upstream response ms Max: 219 ms Avg: 59 ms 3000 Max:3.000s Avg:3.000 s

Bl HEEE 32

SERVER ERROR

FIER HEN 33

vt -
882
. O
)|)
e o
- - - b_‘
)i |
§
.
¢
b

o ~d o, n
H
D
0,
(,':
eed bl bed

100. 6% A
1111129.16/62.96] Tasks: 428; 9 running

sy o d e o M R e SRR e e DA o r = i e maa 4 n

)

-

Bl EER 34

1 . 5 100.
2 100. & 1! ¢
3 100. 7 100.0%
4 1¢ 8 100, 5%
— T S RURCEr R RARS R R RLRYE PR RAR R R ARDRAYE AR - K A0 B ol B RO am fovmm w__ o sa asam - __-.A_,__'.,.!g
System load

50.0

40.0 -

30.0 "5". .s; t ‘;

20.0

10.0 :

14:20 14:30 14:40 14:50 15:00 15:10
== alarm load Tm = load 5m = burn line
=
Current free memory % !

Bl HEEE 35

11T |
HRNN NRNRRN
| |11
| |11

RERPROEARYRLB RIp -}

’ i »
L L .

LI]]
| i

| |
ARARNY

Message
kernel:

Message

kernel:

50.0
Message

kernel:

| Message
‘ ‘7 kernel:

40.0

30.0 i

of Ve .

Message

20.0 Message

kernel:

Message
10.0

14:20

Message

== alarm load Tm Lerpel

Message

kernel:

kernel:

kernel:

[
'M

O

ARRNARNNY
SRANRRRRE
|lll RRRRANE

0
0

p—
)

R léJ.fL‘.‘ P R

lll lli

|11
1]
1111

from syslogd@ul2 at Jan 19 12:19: 51 _—

[30582052.591040] NMI watchdog: BUG:

soft

from syslogd@ul2 at Jan 19 12:19:54 ...

[30582055.947062] NMI watchdog: BUG:

soft

from syslogd@ul2 at Jan 19 12:20:03 ...

[30582064.751125] NMI watchdog: BUG:

soft

from syslogd@ul2 at Jan 19 12:20:10 ...
[30582071.787175] NMI watchdog: BUG:

soft

from syslogd@ul2 at Jan 19 12:20:10 ...

[30582071.867174] NMI watchdog: BUG:

soft

from syslogd@ul2 at Jan 19 12:20:11 ...

[30582072.191175] NMI watchdog: BUG:

soft

from syslogd@ul2 at Jan 19 12:20:11 ...

[30582072.351177] NMI watchdog: BUG:

soft

from syslogd@ul2 at Jan 19 12:20:11 ...

:[30582072.831181] NMI watchdog: BUG:

soft

from syslogd@ul2 at Jan 19 12:20:11 ...

[30582072.911180] NMI watchdog: BUG:

soft

lockup

lockup

lockup

lockup

lockup

lockup

lockup

lockup

lockup

11]]
|11]
1
|1]

ARNRURRNRRE
ARNNARNNNEN
| |
i i

1 1 [
et [~ [~

o
)
<
&

|
|
||| ||]|
L]] 1]

p—
o
&

CPU#10 stuck for 22s! [pidof:8724]

CPU#2 stuck for 23s! [pidof:9048]

CPU#12 stuck for 23s! [pidof:7398]

CPU#0 stuck for 22s! [pidof:8730]

CPU#1 stuck for 22s! [pidof:6775]

CPU#5 stuck for 23s! [pidof:7869]

CPU#7 stuck for 22s! [pidof:7465]

CPU#13 stuck for 22s! [pidof:7892]

CPU#14 stuck for 22s! [zabbix agentd:6350

I HEN 36

be3onaceH nNu
JavaScript ons
[lporpammucTta ?

I HEE 39

cneunduka

cneunduka

3

FIEE HEE 41

@ Prototypal Inheritance X +

& @ crockford.com/javascript/prototypal.htm

Prototypal Inheritance in JavaScript

Douglas Crockford

www.crockford. com

Five years ago I wrote Classical Inheritance in JavaScript (Chinese Italian Japanese). It showed that
JavaScript is a class-free, prototypal language, and that it has sufficient expressive power to
simulate a classical system. My programming style has evolved since then, as any good
programmer's should. I have learned to fully embrace prototypalism, and have liberated myself
from the confines of the classical model.

My journey was circuitous because JavaScript itself 1s conflicted about its prototypal nature. In
a prototypal system, objects inherit from objects. JavaScript, however, lacks an operator that
performs that operation. Instead i1t has a new operator, such that

new f()

code

Starter

Generation

module 1/1

module 1/2

module 1/3

module 2/1:

1/1 « 1/3

module 1/2/1

module 1/2/2

implicit prototype link

sl

explicit prototype property

JavaScript Objects Topology

undefined — null

!

Primitives Objects: Object.create(null) Functions

e Constructible: e Constructible:

Number, String, function, class
Boolean A 4

Constructible « Non Constructible:
e Non Constructible: Array, Date, Map, Set Arrow, Generators *

Symbol, Bigint WeakMap, WeakSet etc...

BrendanEich €& v
@BrendanEich

Replying to @went_out @Andre 487 and @jsunderhood

Right, {null, undefined} form an equivalence class for ==.

8:53 AM - May 5, 2020 - Twitter Web App

2 Retweelts 4 Likes

9, () v T
gimw) went.out @went_out - May 5 v I
E Replying to @BrendanEich @Andre_487 and @jsunderhood
It is absolutely Outstanding point! !

Bl BEE 46

null is not a mistake

my apologies to Sir Charles Antony Richard Hoare

JavaScript Objects Topology

undefined — null

!

Primitives Objects: Object.create(null) Functions

e Constructible: e Constructible:

Number, String, function, class
Boolean s 4

Constructible e Non Constructible:
e Non Constructible: Array, Date, Map, Set Arrow, Generators *

Symbol, Bigint WeakMap, WeakSet etc...

> hext

< wMyConstructor {state: 3}
state: 3
v proto :
state: 2
v proto :
state: 1
p proto : Object

» HEN

/Vlmdnweb docs References Guides Plus Curriculum & Blog Play Al HelpﬂiD € Theme | __Q :j' Login
References > JavaScript > Inheritance and the prototype chain
.jf"_Y Filter)

In this art

» Complete beginners

» JavaScript Guide

» Intermediate

v Advanced

Inheritance and the prototype chain

Memory Management

Concurrency model and Event Loop

References

» Built-in objects

» Expressions & operators

» Statements & declarations

» Functions

» Classes

Inheritance and the prototype chain

Inheritance w

chain
In programming, inheritance refers to passing down characteristics from a parent to a child so that a

new piece of code can reuse and build upon the features of an existing one. JavaScript implements Constructors

inheritance by using objects. Each object has an internal link to another object called its prototype. \hspecting pr

That prototype object has a prototype of its own, and so on until an object is reached with null as die

its prototype. By definition, null has no prototype and acts as the final link in this prototype chain.

Different
It is possible to mutate any member of the prototype chain or even swap out the prototype at | te':_en Wai
mutating pro

runtime, so concepts like static dispatching 2 do not exist in JavaScript.

Performance

JavaScript is a bit confusing for developers experienced in class-based languages (like Java or C++), Conclusion

as it is dynamic and does not have static types. While this confusion is often considered to be one of
JavaScript's weaknesses, the prototypal inheritance model itself is, in fact, more powerful than the
classic model. It is, for example, fairly trivial to build a classic model on top of a prototypal model —

which is how classes are implemented.

Although classes are now widely adopted and have become a new paradigm in JavaScript, classes
do not bring a new inheritance pattern. While classes abstract most of the prototypal mechanism

away, understanding how prototypes work under the hood is still useful.

MDN web docs Technologies v References & Guides v Feedback v) @

Inheritance and the prototype chain Editin wia

Web technology for developers » JavaScript > Inheritance and the prototype chain English v

JavaScript is a bit confusing for developers experienced in class-based languages (like Java or

Related Topics

. C++), as it is dynamic and does not provide a class implementation per se (the class
JavaScript

keyword is introduced in ES2015, but is syntactical sugar, JavaScript remains prototype-
Tutorials: based).

Complete beginners ,) , ,
x : - When it comes to inheritance, JavaScript only has one construct: objects. Each object has a

JavaSctipt Guide private property which holds a link to another object called its prototype. That prototype object
>
has a prototype of its own, and so on until an object is reached with null as its prototype. By

» Intermediate definition, null has no prototype, and acts as the final link in this prototype chain.

v Advanced Nearly all objects in JavaScript are instances of Object which sits on the top of a prototype

" . . chain.
Inheritance and the prototype chain

s While this confusion is often considered to be one of JavaScript's weaknesses, the prototypal

JavaScript typed arrays inheritance model itself is, in fact, more powerful than the classic model. It is, for example, fairly

Memory Management trivial to build a classic model on top of a prototypal model.

Concurrency model and Event Loop

References:

- BiEnepe Inheritance with the prototype chain

» Expressions & operators

MDN web docs Technologies v References & Guides v Feedback v) @

Inheritance and the prototype chain Editin wia

Web technology for developers » JavaScript > Inheritance and the prototype chain English v

JavaScript is a bit confusing for developers experienced in class-based languages (like Java or

Related Topics

. C++), as it is dynamic and does not provide a class implementation per se (the class
JavaScript

keyword is introduced in ES2015, but is syntactical sugar, JavaScript remains prototype-
Tutorials: based).

Complete beginners ,) , ,
x : - When it comes to inheritance, JavaScript only has one construct: objects. Each object has a

private property which holds a link to another object called its prototype. That prototype object

» JavaScript Guide
has a prototype of its own, and so on until an object is reached with null as its prototype. By

) 8

v Advanced Nearly all objects in JavaScript are instances of Object which sits on the top of a prototype

» Intermediate definition, null has no prototype, and acts as the final link in this prototype chain.

" . . chain.
Inheritance and the prototype chain

s While this confusion is often considered to be one of JavaScript's weaknesses, the prototypal

JavaScript typed arrays inheritance model itself is, in fact, more powerful than the classic model. It is, for example, fairly

Memory Management trivial to build a classic model on top of a prototypal model.

Concurrency model and Event Loop

References:

- BiEnepe Inheritance with the prototype chain

» Expressions & operators

typeof null is also good

to my apologies to Brendan Eich

Editorial: special note of null X +

< & @ github.com/tc39/ecma262/pull/191

0 Search or jump to... Pull requests Issues Marketplace Explore

tc39 / ecma262 (& Unwatch releases ¥ 1k

Issues 226 11 Pull requests 90 Actions Security 0 Insights

Editorial: special note of null #1913
wentout wants to merge 10 commits into tc39:master from wentout:master [°)

éx<@
.
iy

Conversation 41 Commits 10 Checks 0 Files changed

wentout commented on 23 Mar « edited ~ @ -

The nature of Null type as one of primitive types can possibly incite the following sequence of
conclusions among the users who are trying to find the "deep meaning", especially today when most
modernt engines allow us to make the following checks:

1. ability to check object is has no inherited ancestor via:

// 1f it returns null, then there is no inheritance
Object.getPrototypeOf(object_we_are_checking);

10.5k

Reviewers

@ ljharb

Assignees

No one assigned

Labels

None yet

+ ~

Fork 868
i

Open with «

+11 -0 EEEEN

-

G

v

code

Starter

Generation

module 1/1

module 1/2

module 1/3

module 2/1:

1/1 « 1/3

module 1/2/1

module 1/2/2

= GanttProject [gantt_project.gan] *

Project Edit View Tasks Resources Help

B

A} -.‘(
&9

- Gantt | {(§; Resources Chart

c 4 S : | Zoom Out

Week 25 Week 26
Droreci I I

|19 22 l23

Name wBegin date End date
main task 22/06/20 26/06/20

sub task 1
sub task 2

sub task 3

main sub_task

sub task 1
sub task 2
sub task 3
sub sub task
sub task 1
sub task 2

sub task 3

22/06/20
26/06/20
23/06/20
29/06/20
29/06/20
29/06/20
29/06/20
30/06/20
30/06/20
30/06/20
30/06/20

26/06/20
26/06/20
24/06/20
29/06/20
29/06/20
29/06/20
29/06/20
30/06/20
30/06/20
30/06/20
30/06/20

> hext

< wMyConstructor {state: 3}
state: 3
v proto :
state: 2
v proto :
state: 1
p proto : Object

ov R

e+ Common Misconception: X +

fes)
(LaJ)

A - H I3 = mwerrinE s [/e s rwys sars YL TINS5 e o e o — ~..<»-»—-»"-'.‘,,-.—-.»-";”.—"’».
< =P C‘ # medium.com/javascript-sce ie/common-misconceptions-about-inheritance-in-javascript-a5d9bab29b0a Lo

instanceof " lies <

Let’s pause here for a moment and reconsider the value of ‘"instanceof '. You

JavaScript Scene might change your mind about its usefulness.
lave ‘ cript, software leadersh D,

ware development, anc

Important: "instanceof * does not do type checking the way that you expect
similar checks to do in strongly typed languages. Instead, it does an identity

check on the prototype object, and it’s easily fooled. It won’t work across
execution contexts, for instance (a common source of bugs, frustration, and
unnecessary limitations). For reference, an example in the wild, from

bacon.js.

It’s also easily tricked into false positives (and more commonly) false
negatives from another source. Since it’s an identity check against a target

object’s ".prototype ' property, it can lead to strange things:

e+ Common Misconception: X <+

few)

& - c © medium_com_" avascript-scene/common-misconceptions-about-inheritance-in-javascript-d5ad9bab295b0a Lo &% W

"instanceof " lies <

Let’s pause here for a moment and reconsider the value of ‘instanceof . You

JavaScript Scene might change your mind about its usefulness.
JavaScript, software leadership,

software development, and...

Important: "instanceof * does not do type checking the way that you expect

:
l l.lltv'.'!.:

wove(inde
L uUsers
n\'ts . ‘)pli('

o I
-
<

8 ‘ Urn t h 15 ok = :\

HEE 59

[t's also easily tricked into false positives (and more commonly) false negatives from another
source. Since it's an identity check against a target object’s ".prototype property, it can lead to

strange things:

function foo() {}

var bar = { a: ‘a’};

foo.prototype = bar; // Object {a: “a”}

baz = Object.create(bar); // Object {a: “a”}
baz i1nstanceof foo // true. oops.

That last result is completely in line with the JavaScript specification. Nothing 1s broken — it’s

-~

just that ‘instanceof can't make any guarantees about type safety. It’s easily tricked into

reporting both false positives, and false negatives.

O 00O NOYUT B WIN —

function foo() { }:
const bar = { a: 'a' };

Object
.setPrototypeOf(
foo.prototype,
bar
7

const baz = Object.create(foo.prototype);
console.log(baz instanceof foo0);

oo HER

/V|mdnwebdocs References Guides Plus Curriculum"ﬁ'D Blog Play Al Help € Theme (:”_ Q.) Login Sig

References > JavaScript > Reference > Standard built-in objects > Symbol > Symbol.hasinstance ¢

In this article

Symbol.hasinstance

Symbol() constructor

Try it
v Properties :
The symbol.hasInstance static data property represents the well-known symbol @@hasInstance . The Value
yiibol- a=ynClierdton instanceof operator looks up this symbol on its right-hand operand for the method used to
S S : ; o Description
Symbol.prototype.description determine if the constructor object recognizes an object as its instance.
Examples

Symbol.hasInstance
Try it Specifications

Browser compatibili

Symbol.isConcatSpreadable

Symbol.iterator)
JavaScript Demo: Symbol.hasinstance

See also

Symbol.match class Arrayl {

static [Symbol.hasInstance](instance) {
return Array.isArray(instance);

}
}

Symbol.matchAll
Symbol.replace

console. log([] instanceof Arrayl);
// Expected output: true

Symbol.search

CoOoO~NOODOE WNRE

Symbol.species

Symbol.split

Symbol.toPrimitive

I HEER 62

I HEE 63

Ctporasa Tununsauua B JavaScript

2021 PITER

Buktop BepliaHckun
DataArt

Strict Types in JavaScript

-

Tunbl
B NpoToTUNnax

BukTtop
BepLwiaHCKunu

Ha YeM 3TO caernaHo

Functions > get

get

The get syntax binds an object property to a function that will be called when that property is

looked up. It can also be used in classes.

Try it -

‘ JavaScript Demo: Functions Getter |

Ha YeM 3TO caernaHo

Functions > set

setl

The set syntax binds an object property to a function to be called when there is an attempt to set

that property. It can also be used in classes.

Try it :

‘ JavaScript Demo: Functions Setter |

Ha YeM 3TO caernaHo

Functions > set

setl

The set syntax binds an object property to a function to be called when there is an attempt to set

that property. It can also be used in classes.

Try it :

‘ JavaScript Demo: Functions Setter |

Ha YeM 3TO caernaHo

Standard built-in objects > Proxy

Proxy

The proxy object enables you to create a proxy for another object, which can intercept and redefine

fundamental operations for that object.

Description

The proxy object allows you to create an object that can be used in place of the original object, but
which may redefine fundamental object operations like getting, setting, and defining properties.
Proxy objects are commonly used to log property accesses, validate, format, or sanitize inputs, and

SO On.

Ha YeM 3TO caernaHo

Standard built-in objects > Symbol > Symbol.hasinstance

Symbol.haslnstance

The symbol.hasInstance Static data property represents the well-known symbol @@hasinstance . The

instanceof operator looks up this symbol on its right-hand operand for the method used to

determine if the constructor object recognizes an object as its instance.

Try it

| JavaScript Demo: Symbol.hasinstance

Ha YeM 3TO caenaHo

Inheritance and the prototype chain

In programming, inheritance refers to passing down characteristics from a parent to a child so that a
new piece of code can reuse and build upon the features of an existing one. JavaScript implements

inheritance by using objects. Each object has an internal link to another object called its prototype.

That prototype object has a prototype of its own, and so on until an object is reached with null as
its prototype. By definition, null has no prototype and acts as the final link in this prototype chain.
It is possible to mutate any member of the prototype chain or even swap out the prototype at

runtime, so concepts like static dispatching 2 do not exist in JavaScript.

JavaScript is a bit confusing for developers experienced in class-based languages (like Java or C++),

as it is dynamic and does not have static types. While this confusion is often considered to be one of

JavaScrint's weaknesses the nrototvnal inheritance model itself is in fact more nowerfiil than the

I HER 76

npumMepbl

npumMepbl

04 Decorator.ts

05_NextStep.js

BbIBOAObI

e Prototype Chain

e getter’'bl + setter’nl

e Proxy + Symbol.hasinstance
... U HEMHOXXKO Marum ...

I HEER 32

Cnacu6o !

I HEN 35

