
TDD IN FRONTEND

by Aleksandr Shinkarev

Test Driven Development (TDD) is a software
development approach where tests are written
before the actual code. Yeah, that’s it…

Back in the early 1990s

Writing your code according to TDD today is a fun
way of working

Bottom Line

Is it a magazine or something?

Why	
ToDDay?

Maturity

Technologies

Automation

Two User Stories

Your Favorite Web App
Context

Not only in-memory!
Making actual network calls
when The Empire strikes back.

Ugly looking UI

As a User
Want to be able to see my ToDos
So that I know what is left to be done

List of ToDos
User Story Numero Uno

Contract First

GET /to-dos-api/to-dos

Endpoint to Read

Response

{

 "toDos": [
 {
 "id": 1,
 "name": "Test"
 }
]
}

As a User
Want to be able to add a new ToDo
So that I can keep track of my duties

Acceptance Criteria

1. I can add a ToDo with some name

2. When I add it, it should appear
in the list of my ToDos

New ToDo
User Story Deux

Contract First

POST /to-dos-api/to-dos

Endpoint to Create

Request Body

{
 "name": "Dishes"
}

Response

{
 "newToDoId": 2
}

DELETE /to-dos-api/to-dos?toDoId=2

Endpoint to Delete

Red - fail
Green - pass
Blue - improve

TDD Recap

Write	a	failing	
test

Make	the	
test	pass

Refactor

Show	
time!

https://github.com/Tou
rmalineCore/to-dos-ui

https://github.com/Tou
rmalineCore/to-dos-api

https://github.com/TourmalineCore/to-dos-ui
https://github.com/TourmalineCore/to-dos-ui
https://github.com/TourmalineCore/to-dos-api
https://github.com/TourmalineCore/to-dos-api

Swagger

https://swagger.io/

Swagger home page

● OpenAPI Specification

● Playground

TypeScript Types OpenAPI Specification● Typed Backend Code

https://swagger.io/

Cypress is WAT?

https://www.cypress.io/

Cypress landing shows it all

● A way to make everything visual

● A sandbox for kids with a not yet ready broken API

● A tool to write and run your web app tests within

https://www.cypress.io/
https://docs.cypress.io/api/commands/within

Behaviour-Driven Development with Whom?

Example of Gherkin syntax for specifications
Bless	you!

Given a free online course

When watch it and practice

Then don’t buy expensive courses

https://cucumber.io/
docs/bdd/better-gher

https://cucumber.io/do
cs/bdd/

https://cucumber.io/docs/bdd/better-gherkin/
https://cucumber.io/docs/bdd/better-gherkin/
https://cucumber.io/docs/bdd/
https://cucumber.io/docs/bdd/

Cypress Component Tests

● Isolation means no website
is running, no backend

● Only the component itself
is rendered

https://docs.cypress.i
o/guides/component
-testing/overview

Cypress docs about it

https://www.compon
entdriven.org/

One more nice ref from there

http://surl.li/satmn

Image

● You test a component in isolation

https://docs.cypress.io/guides/component-testing/overview
https://docs.cypress.io/guides/component-testing/overview
https://docs.cypress.io/guides/component-testing/overview
https://www.componentdriven.org/
https://www.componentdriven.org/

What	is	
state?	

State Management

When interact with UI

Update state

When change state

Update UI

Why	
MobX?

As Simple
as Possible

Clean

https://mobx.js.org/

https://mobx.js.org/

ES6 Class is MobX Friend #1

 constructor() {

 makeAutoObservable(this)

 }

The only bit of MobX magic

 get secondsPassed() {

 return this._secondsPassed

 }

That is how we read from getters with no arguments

 increaseTimer() {

 this._secondsPassed += 1

 }

}

This is how we modify state using class methods
that you never read through

https://mobx.js.org/re
act-integration.html

MobX example

class TimerState {

 private _secondsPassed = 0

}

https://mobx.js.org/react-integration.html
https://mobx.js.org/react-integration.html

React Context is the 2nd MobX Bestie
const TimerStateContext = createContext<TimerState>()

<TimerStateContext.Provider value={new TimerState()}>

 <TimerView />

</TimerStateContext.Provider>,

https://medium.com/@NickIannelli
/nested-context-the-underrated-
aspect-thats-probably-missing-fr
om-your-react-app-16e73f7d1

Nested React Context to get it
not only for Dependency Injection

This is how we inject the state class instance

https://medium.com/@NickIannelli/nested-context-the-underrated-aspect-thats-probably-missing-from-your-react-app-16e73f7d1
https://medium.com/@NickIannelli/nested-context-the-underrated-aspect-thats-probably-missing-from-your-react-app-16e73f7d1
https://medium.com/@NickIannelli/nested-context-the-underrated-aspect-thats-probably-missing-from-your-react-app-16e73f7d1
https://medium.com/@NickIannelli/nested-context-the-underrated-aspect-thats-probably-missing-from-your-react-app-16e73f7d1

const TimerView = observer(() => {

 const timerState = useContext(TimerStateContext)

 return (

 Seconds passed: {timerState.secondsPassed}

)

})

React Context is the 2nd MobX Besty

This is how we access the state

MobX	magic!

Cypress E2E Tests

https://docs.cypress.io/guide
s/end-to-end-testing/writing
-your-first-end-to-end-test

Cypress E2E getting started

Here you test your end product

(no	or	very	little	mocking)

(as	much	as	it	makes	sense)

Opens your product inside Cypress

You make calls to your real backend

You act like a real user of your product

https://docs.cypress.io/guides/end-to-end-testing/writing-your-first-end-to-end-test
https://docs.cypress.io/guides/end-to-end-testing/writing-your-first-end-to-end-test
https://docs.cypress.io/guides/end-to-end-testing/writing-your-first-end-to-end-test

Why so complex with all these
Content, Container, State?

Repeatable Separation of Concerns

Sta
te Section

Server
conte

nt

Layers

ToDo App Example Closer to Real Life

● Page - orchestrates

ToDosPage

● State - data for read and write

ToDosStat
e

● Container - makes network calls

ToDosContain
er

● Content - interaction, most tested one

ToDosContent

Components Hierarchy

It is questionable, isn’t it?

What	kind	of	tests	
did	we	look	at?
	

Types	
of	Tests

State

Component

E2E

Contract
using linting by auto-generated
API types

Where to Test?

Tricky logic with your state
(modification and read)
● Toggle selection of items

● Validation of input

● Filtration

State

How it is rendered, if functions
are called or not after certain event
● Is a button disabled at certain state?

● If I see a thing?

● If I click here will this callback be called/not called?

Content

Where to Test?

Data loading and data modification
via network
● Can I receive data via network and see it?

● Can I save data via network?

● What if I receive an error making a network

call?

Container

I can execute the user flow
of the end product
● Going through the core business flow

● Reveals issues at any layer preventing

users from getting the main business value

● The biggest ROI (Return of Investment)

E2E

Benefits of Working
Like That on Frontend

Testability is baked-in

You don’t really test manually

You are independent from API

You can make quite complex pages
based on these ideas

Code does what you expect from it

You get some dopamine

Drawbacks

● It is difficult

● You need to carefully decide on your Testing Strategy

DRAMA	QUEEN

● Cypress is a drama queen sometimes

These are Just Tools

● React

● Cypress

● MobX

● Swagger

But What You Really Need Is

More References

Bran van der Meer - Test-Driven Development
in JS with Acceptance Tests 53m
https://www.youtube.com/watch?v=ym62X_gvMXs

One more guideline
from my ex-colleague

Robert C. Martin - The Three Laws of TDD
1h 06m
https://www.youtube.com/watch?v=AoIfc5NwRks

Uncle Bob's live
coding on the subject

Dave Farley - TDD - Test Driven Development
30 videos playlist
https://www.youtube.com/playlist?list=PLwLLcwQln
XByqD3a13UPeT4SMhc3rdZ8q

More about modern
application of TDD itself

https://www.youtube.com/watch?v=ym62X_gvMXs
https://www.youtube.com/watch?v=AoIfc5NwRks
https://www.youtube.com/playlist?list=PLwLLcwQlnXByqD3a13UPeT4SMhc3rdZ8q
https://www.youtube.com/playlist?list=PLwLLcwQlnXByqD3a13UPeT4SMhc3rdZ8q

FronTDD Architecture

https://helpmegoforit.com

Landing about course

course	:)

We are having the course tested
and gathering feedback

https://helpmegoforit.com/

Anastasia
Tupikina

Aleksandr Shinkarev

12 years of experience
CEO of Tourmaline Core

Follow	us

tourmalinecore.com

Web site
tourmalinecore

Vk

Design	by

Maria
Yadryshnikova

http://tourmalinecore.com/ru
https://vk.com/tourmalinecore

