
Building Multi-Tenant
ASP.NET Core Applications

Alper Ebicoglu
Co-Founder of Volosoft
alper.ebicoglu@volosoft.com 
twitter.com/alperebicoglu



Open-source Framework on 



Open-source Framework on 



What is ABP Framework?

• Multi-tenancy
• Audit logging
• Exception handling
• Background jobs
• Modularity
• Event bus
• Unit of work
• etc…

• Routing
• Dependency injection
• Session management
• Request / response 
• Security
• etc…

• do what you do best

An opinionated architecture 
to build line-of-business web apps

ABP Web Framework

ASP.NET Core Web Framework

Your Application

Generic web framework

Focus on your business code
🚀🚀



Agenda
• Introduction to SaaS & Multi-Tenancy
• Pros and Cons of Multi-Tenancy
• Database & Deployment Scenarios
• Identifying and Changing the Active Tenant
• Data Isolation
• Conditionally Turning Multi-Tenancy On / Off
• Handling Database Migrations
• Implementation of the Feature System



What is Multi-Tenancy?
• A common approach to build SaaS solutions
• Resources are shared between tenants
• Application data is isolated between tenants

 Tenants: Our clients, using the service
Host: Service provider

An ideal multi-tenant application should be
 Unaware of multi-tenancy as much as possible!
 Deployable to on-premise as well

Parties



As-a-Service Business Models

You manage

3rd Party 
Manages



Advantages of Multi-Tenancy

1. Cost efficiency — max utilization
2. Consistent user experience
3. Ease of maintenance
4. Scalability
5. Rapid deployment for new users



Challenges of Multi-Tenancy

1. Data isolation
2. Configuration & customization per tenant
3. Performance balance: Noisy neighbors!
4. Security
5. Backup and recovery



Deployment & Database Architectures



Maintaining Application States

Application code & services should be stateless!

Where should we save the state?🤔🤔
 HTTP Request (cookie, header, query string, payload)
 Authentication ticket
 Database
 Distributed cache (Redis, Memcached, ...)



Identifying the Active Tenant



Identifying the Active Tenant

1. CurrentUserTenantResolveContributor
2. QueryStringTenantResolveContributor
3. RouteTenantResolveContributor
4. HeaderTenantResolveContributor
5. CookieTenantResolveContributor
6. DomainTenantResolver

How to determine the current tenant?🤔🤔



Identifying the Active Tenant
1. Current User (claims)

HttpContext.User.Identity.Claims
.FirstOrDefault(c => c.Type == “TenantId”)



2. Query String
Identifying the Active Tenant

https://fabrikam.com?tenantId=3



3. Route

https://fabrikam.com/acme/

Identifying the Active Tenant



4. Header
Identifying the Active Tenant



5. Cookie
Identifying the Active Tenant



6. Domain

https://acme.fabrikam.com

Identifying the Active Tenant



Data Isolation
✓ Identifying the Active Tenant



Data Isolation — Traditional way

You normally do this 



Data Isolation



Data Isolation — EF Core

* Soft delete: An Entity Type defines an 
IsDeleted property.
* Multi-tenancy: An Entity Type defines a 
TenantId property.



Data Isolation — EF Core Manual Way

HasQueryFilter() 
for global filtering



Data Isolation — EF Core 1-) Find all 
entities 
implement 
IMultiTenant

2-) Create LINQ 
expression3-) Add to global filters



Data Isolation — EF Core PROS & CONS

😊😊 Easy to implement
😊😊 Supports navigation properties as well
😕😕 Works only with EF Core



Data Isolation — EF Core PROS & CONS

😡😡 IgnoreQueryFilters() disables all filters



Data Isolation — EF Core PROS & CONS
😡😡 Can be defined for the root entity 

of the inheritance hierarchy 

Define to 
Animal



Data Isolation — EF Core PROS & CONS
😡😡 Does not support Stored Procedures or T-SQL



Data Isolation — EF Core PROS & CONS
Database level solution 
👉👉 Row Level Security

Rows filtered based on 
user roles, attributes

https://learn.microsoft.com/en-us/sql/relational-databases/security/row-level-security

Restriction logic is done 
in the DB

https://learn.microsoft.com/en-us/sql/relational-databases/security/row-level-security


Data Isolation — MongoDB

3-Add to our custom global filters

1-Find all 
IMultiTenant

2-Create 
filter 

expression



Set TenantId for New Entities
✓ Data Isolation

✓ Identifying the Active Tenant



Set TenantId for New Entities

Set TenantId by reflection



DB Connection String Selection

✓ Set TenantId for New Entities
✓ Data Isolation

✓ Identifying the Active Tenant



Connection String Selection — DB

1. The current tenant

2. The current module / microservice
3. The default connection string 

Fallbacks



Connection String Selection — Code

Shared DB

Dedicated DB



Changing the Active Tenant
✓ DB Connection String Selection
✓ Set TenantId for New Entities

✓ Data Isolation
✓ Identifying the Active Tenant



Changing the Active Tenant

Set active tenant

Revert back



Setting the Active Tenant in Middleware

Set the current 
tenant within the 

middleware



Temporarily Disable Multi-Tenancy
✓Changing the Active Tenant
✓ DB Connection String Selection
✓ Set TenantId for New Entities

✓ Data Isolation
✓ Identifying the Active Tenant



Disabling Multi-Tenancy Filter (Usage)

Returns book 
count without 
tenantId filter



Disabling Multi-Tenancy Filter (Implementation)



Database Migration
✓ Temporarily Disable Multi-Tenancy

✓Changing the Active Tenant
✓ DB Connection String Selection
✓ Set TenantId for New Entities

✓ Data Isolation
✓ Identifying the Active Tenant



Database Migration 

Approach-1: Make DB migration with a custom tool
😊😊 Easy to implement. All tenants are in the same version
😡😡 May get too long time for big number of tenants and data.
😡😡 All tenants wait for all upgrade progress

Approach-2: Run migration on first DB access
😊😊 Upgrading is distributed to time. A tenant does not wait for another
😡😡 First user may wait too much and see timeout exception. 
😡😡 Hard to implement (concurrency problems)!



Database Migration — Ideal Way

Approach-3: Make two types application servers. 

Upgraded tenants use the new application, other tenants use 
the old application

😊😊 Minimum wait time for a tenant
😊😊 Upgrading can be scheduled for tenants
😊😊 Run A/B tests and see bugs before anyone else
😡😡 Requires multiple app servers
😡😡 Hard to maintain and monitor



Feature System
✓ Database Migration

✓ Temporarily Disable Multi-Tenancy
✓Changing the Active Tenant
✓ DB Connection String Selection
✓ Set TenantId for New Entities

✓ Data Isolation
✓ Identifying the Active Tenant



The Feature System
Editions

Fe
at

ur
es



The Feature System — Microsoft’s Solution

appsettings.json

Defined only for Boolean values
Usually for A/B testing
No multi-tenancy support



The Feature System — Define features

Features are stored 
in a readonly list



The Feature System — Check the features

Declarative 
check 

Conditional check 



Use a Management UI to manage features for tenants

The Feature System — UI



Thank you for joining 

open-source 
web application 

framework
https://abp.ioDownload this presentation:

https://github.com/ebicoglu/presentations

https://twitter.com/alperebicoglu

https://medium.com/@alperonline

https://github.com/ebicoglu

https://github.com/ebicoglu/presentations/

	Building Multi-Tenant �ASP.NET Core Applications
	Open-source Framework on 
	Open-source Framework on 
	What is ABP Framework?
	Agenda
	What is Multi-Tenancy?
	As-a-Service Business Models
	Advantages of Multi-Tenancy
	Challenges of Multi-Tenancy
	Deployment & Database Architectures
	Maintaining Application States
	Identifying the Active Tenant
	Identifying the Active Tenant
	Identifying the Active Tenant
	Identifying the Active Tenant
	Identifying the Active Tenant
	Identifying the Active Tenant
	Identifying the Active Tenant
	Identifying the Active Tenant
	Data Isolation
	Data Isolation — Traditional way
	Data Isolation
	Data Isolation — EF Core
	Data Isolation — EF Core Manual Way
	Data Isolation — EF Core
	Data Isolation — EF Core PROS & CONS
	Data Isolation — EF Core PROS & CONS
	Data Isolation — EF Core PROS & CONS
	Data Isolation — EF Core PROS & CONS
	Data Isolation — EF Core PROS & CONS
	Data Isolation — MongoDB
	Set TenantId for New Entities
	Set TenantId for New Entities
	DB Connection String Selection
	Connection String Selection — DB
	Connection String Selection — Code
	Changing the Active Tenant
	Changing the Active Tenant
	Setting the Active Tenant in Middleware
	Temporarily Disable Multi-Tenancy
	Disabling Multi-Tenancy Filter  (Usage)
	Disabling Multi-Tenancy Filter (Implementation)
	Database Migration
	Database Migration 
	Database Migration — Ideal Way
	Feature System
	The Feature System
	Slide Number 48
	The Feature System — Define features
	Slide Number 50
	Slide Number 51
	Thank you for joining 

