
Abhilash Majumder
(abhilash.majumder@intel.com)

 AI Frameworks and Compiler Engineer

 INTEL

SYCL : Integrated
compiler runtime for
accelerated Deep
Learning

ABSTRACT

LLMs and generative models have become the mainstream deep learning architectures for industries globally
and with customized optimizations there is a lot of developments among deep learning compilers . However,
majority of the frameworks supporting exa-scale model training/finetuning (such as Pytorch or Jax) has
extensive device specific compiler runtime codes which are performant on a single specific hardware type. To
democratize deep learning models and benchmark them across different runtime devices, there is a need to
support a device agnostic compiler backend which can be run on Nvidia/AMD or Intel (other ISA's of x86 CPU
or llvm/clang supported GPU). This talk focuses on how to create such backends using SYCL (originally from
Khronos) and induce platform specific optimizations; also building abstractions on top of llvm/clang to suit
SYCL runtime optimizations for GPUs /CPUs and FPGAs .The generalization of standard compiler runtime is
enabling deep learning frameworks delegate device specific IR without having to write customized Api calls.

CONTENTS

- Scope of the presentation
- Brief Introduction to LLVM Compiler Backend
- Introduction to SYCL (SYCL program model, memory, parallel stl, adaptive cpp)
- Custom Kernels in SYCL (along with Pytorch case study)
- DPCT (DPC++ Toolkit, automigration samples)
- Performance Results
- References
- Conclusion

Code available at: https://github.com/abhilash1910/ISO-CPP-SYCL-Compiler-Conference

https://github.com/abhilash1910/ISO-CPP-SYCL-Compiler-Conference

Scope

• What is and why do we need SYCL ? Code once and build anywhere

• Where does cross platform SYCL language come into picture

• Semantics of Device & Host Asynchronous Task Scheduling and parallel programming model of
SYCL

• Effects on Deep Learning

• DPC++ Compiler for auto migration of CUDA to SYCL code

 Introduction to LLVM Compiler Backend (Clang)

5

LLVM Compiler: Industrial strength toolchain
of compiler technologies

• oneAPI’s Data Parallel C++ (DPC++)
is an Intel-led project that lets us write
programs that execute across different
computing systems without major,
time-consuming code changes.

• The compiler contains three compiler
drivers — icx, icpx, and dpcpp — to
further simplify tailoring code for
unique support requirements. These
drivers are for compiling and linking C
programs, C++ programs, and C++
programs with SYCL extensions,
respectively.

• The icpx (SYCL) compiler is the heart
of oneAPI and provides foundation of
SYCL/C++ runtime across
accelerators.

6
Intel Corporation

 Introduction to LLVM Compiler Backend (Clang)

6
Intel Corporation

 Introduction to Intel’s LLVM Compiler

 Introduction to LLVM Compiler Backend (Clang)

8

Compiler Commands for SYCL code:

• Compiling with icx/icpx compiler is
follows:

• For spv (spirv) builds the command is:

• For ptx device code generation, command
is:

 Introduction to LLVM Compiler Backend (Clang)

9

Compiler Commands for SYCL code:

• To use clang++ compiler, command is:

• For disassembling bc code, we can do:

• Alternate way to read ll code from
codegen

 Introduction to LLVM Compiler Backend (Clang)

10

LLVM : ICX/ICPX Compiler AOT

- AOT is useful feature which requires SYCL with
L0 backend for device segregation

•No additional compilation time is done when
running your application.

•No just-in-time (JIT) bugs encountered due to
compilation for the target. Any bugs should be
found during AOT and resolved.

•Your final code, executing on the target device,
can be tested as-is before you deliver it to
end-users.
- A program built with AOT compilation for
specific target device(s) will not run on different
device(s). You must detect the proper target
device at runtime and report an error if the
targeted device is not present. The use of
exception handling with an asynchronous
exception handler is recommended.

 Introduction to LLVM Compiler Backend (Clang)

11

LLVM : ICX/ICPX Compiler AOT (contd)

- For linking SYCL kernel codes with non kernel
codes for AOT, we can compile separately both
of them and link them using a target device
backend.

 Introduction to SYCL

12

 Introduction to SYCL

13

 Introduction to SYCL

14

SYCL : Heterogeneous Parallel Device
Programming

•Unified Shared Memory (USM)
enables code with pointers to work
naturally without buffers or accessors
•Parallel reductions add a built-in
reduction operation to avoid boilerplate
code and achieve maximum
performance on hardware with built-in
reduction operation acceleration
•Work group and subgroup algorithms
add efficient parallel operations
between work items

•Class template argument deduction (CTAD) and
template deduction guides simplify class template
instantiation

•Simplified use of Accessors with a built-in reduction
operation reduces boilerplate code and streamlines
the use of C++ software design patterns

•Expanded interoperability enables efficient
acceleration by diverse backend acceleration APIs

•SYCL atomic operations are now more closely aligned
to standard C++ atomics to enhance parallel
programming freedom

 Introduction to SYCL

15

SYCL : Heterogeneous Parallel Device
Programming – Memory Management

 Introduction to SYCL - USM

16

 Introduction to SYCL

17

SYCL : Heterogeneous Parallel Device
Programming – USM buffer Task Queues

 Introduction to SYCL

18

SYCL : Heterogeneous Parallel Device
Programming – USM buffer Task Queues

Work is submitted to devices through queues.
A queue maps to one and only one device.
Multiple queues can map to the same device.

Queues are out-of-order by default.
Work may not execute in the order in which it was submitted.
Work can be ordered through events or accessors.

An in-order queue can be created by passing a property to the
constructor.

In-order queues just do one thing after another – easier to reason about!

 Introduction to SYCL

19

SYCL : Heterogeneous Parallel Device
Programming – USM

aspect::usm_device_allocations.
aspect::usm_host_allocations.

 Introduction to SYCL

SYCL : Heterogeneous Parallel Device
Programming – Queues

 Introduction to SYCL

SYCL : Heterogeneous Parallel Device
Programming – Queues

 Introduction to SYCL

SYCL : Heterogeneous Parallel Device
Programming – Queues in SYCL Kernels

 Introduction to SYCL

23

SYCL : Heterogeneous Parallel Device
Programming – Work and Sub Groups

• The index space of an ND-Range
kernel is divided into work-groups,
sub-groups, and work-items. A
work-item is the basic unit. A collection
of work-items form a sub-group, and a
collection of sub-groups form a
work-group.

• All the work-groups run concurrently
but may be scheduled to run at
different times depending on
availability of resources. Work-group
execution may or or may not be
preempted depending on the
capabilities of underlying hardware.

• A sub-group is a collection of
contiguous work-items in the global
index space that execute in the same
VE thread

 Introduction to SYCL

24

SYCL : Heterogeneous Parallel Device
Programming – Memory Model

•Global-memory is accessible to all
work-items in all work-groups. Work-items
can read from or write to any element of a
global memory object. Reads and writes
to global memory may be cached
depending on the capabilities of the
device. Global memory is persistent
across kernel invocations. Concurrent
access to a location in an USM allocation
by two or more executing kernels where
at least one kernel modifies that location
is a data race; there is no guarantee of
correct results unless mem-fence and
atomic operations are used.

•Local-memory is accessible to all work-items in a
single work-group. Attempting to access local memory
in one work-group from another work-group results in
undefined behavior. This memory region can be used
to allocate variables that are shared by all work-items
in a work-group. Work-group-level visibility allows local
memory to be implemented as dedicated regions of
the device memory where this is appropriate.
•Private-memory is a region of memory private to a
work-item. Attempting to access private memory in one
work-item from another work-item results in undefined
behavior.
•Generic-memory is a virtual address space which
overlaps the global, local and private address spaces.
Therefore, an object that resides in the global, local, or
private address space can also be accessed through
the generic address space

https://registry.khronos.org/SYCL/specs/sycl-2020/html/sycl-2020.html#global-memory
https://registry.khronos.org/SYCL/specs/sycl-2020/html/sycl-2020.html#mem-fence
https://registry.khronos.org/SYCL/specs/sycl-2020/html/sycl-2020.html#local-memory
https://registry.khronos.org/SYCL/specs/sycl-2020/html/sycl-2020.html#private-memory
https://registry.khronos.org/SYCL/specs/sycl-2020/html/sycl-2020.html#generic-memory

 Introduction to SYCL

25

SYCL : Heterogeneous Parallel Device
Programming – Work and Sub Groups

 Introduction to SYCL

26

SYCL : Heterogeneous Parallel Device
Programming – ND Ranges

 Introduction to SYCL

27

SYCL : Heterogeneous Parallel Device
Programming – Work and Sub Groups

 Introduction to SYCL

28

SYCL : Heterogeneous Parallel Device
Programming – Memory Scope

 Introduction to SYCL

29

SYCL : Heterogeneous Parallel Device
Programming – Task & Heirarchical Data
Parallelism

TP

HP

Sync

 Introduction to SYCL

30

SYCL : Heterogeneous Parallel Device
Programming – Task & Heirarchical Data
Parallelism

• get_ group_id: Id of workgroup
• get_local_id : id of work item in a group
• Get_local_range : dimension of work item
• get_group_range: number of subgroups in a workgroup
• get_max_local_range: maximum number of work items

permitted in a workgroup
• get_group_linear_id: same as get_group_id()[0].
• get_local_linear_id: same as get_local_id()[0].
• get_group_linear_range: same as

get_group_range()[0].
• get_local_linear_range: same as

get_local_range()[0].
• leader: return leader of the work group

 Introduction to SYCL

31

SYCL : Heterogeneous Parallel Device
Programming – Kernel Definitions

Kernels as Function Objects

A kernel can be defined as a named function
object type. These function objects provide the
same functionality as any C++ function object,
with the restriction that they need to follow
SYCL rules to be device
copyable. The operator() member function must
be const-qualified, and it may take different
parameters depending on the data accesses
defined for the specific kernel. If
the operator() function writes to any of the
member variables, the behavior is undefined.

https://registry.khronos.org/SYCL/specs/sycl-2020/html/sycl-2020.html#device-copyable
https://registry.khronos.org/SYCL/specs/sycl-2020/html/sycl-2020.html#device-copyable

 Introduction to SYCL

32

SYCL : Heterogeneous Parallel Device
Programming – Kernel Definitions

Kernels as Lambdas

.

 Introduction to SYCL

33

SYCL : Heterogeneous Parallel Device Programming – Kernel Definitions

Type trait – device copyable

is_device_copyable

•is_device_copyable must meet the Cpp17UnaryTrait requirements.
•If is_device_copyable is specialized such that is_device_copyable_v<T> == true on
a T that does not satisfy all the requirements of a device copyable type, the results are
unspecified.

.

 Introduction to SYCL

34

SYCL : Heterogeneous Parallel Device Programming – Kernel Definitions Parameter Rules

.

 Introduction to SYCL

35

SYCL : Heterogeneous Parallel Device Programming – Kernel Definitions

Type trait – group functions

 is_group<T>

•Use in barriers, broadcast , group algorithms (any_of, all_of, shift_left, shift_right, permute,
reduce) etc. Ex: group _ barrier

.

 Introduction to SYCL

36

SYCL : Heterogeneous Parallel Device Programming – Kernel Definitions

Address Space – Pointer Class

 1. Accessors : Using multi_ptr

2. Explicit pointer class: global_ptr

3. Generic Address Space: SYCL_EXTERNAL

.

 Introduction to SYCL

37

SYCL : Heterogeneous Parallel Device
Programming – SIMD Work and Sub Groups
(CPY)

1024*1024 across 16 work items

 Introduction to SYCL

38

SYCL : Heterogeneous Parallel Device
Programming – Exception Handling

queue::wait_and_throw()
queue::throw_asynchronous()
event::wait_and_throw()

 Introduction to SYCL

39

SYCL : Heterogeneous Parallel Device
Programming – Synchronization - Device
Event

device_event (asynchronous)

 Introduction to SYCL

40

SYCL : Heterogeneous Parallel Device
Programming – Synchronization - Atomic ref

atomic_ref (asynchronous) provides ability
to perform atomic operations in device
code. Requires a Memory Ordering

 Introduction to SYCL

41

Custom Kernels : SYCL
Metaprogramming Methods

• SYCL allows us to easily leverage the power of
C++ template metaprogramming in device code.
Most valid compile-time constructs will work in a
kernel. This means that we can define generic
command groups, kernels, use functional
programming concepts, and offload a lot of work
to the compiler.

• . This is a sample case of a generic executable
adder kernel which performs addition through
operator overloading ().

• We can initiate a main and create a single buffer
of inputs.It can be noticed that since our
function object is now a full-fledged class, we do
not have to make up an artificial template
parameter, since the kernel name is known - it is
exactly the name of the function object type

 Introduction to SYCL

42

SYCL : Heterogeneous Parallel Device
Programming – CUDA SYCL

The CUDA thread hierarchy is composed of a grid of
thread blocks.
•Thread block : A thread block is a set of concurrently
executing threads that reside on the same SM; share
the resources of that SM, and cooperate among
themselves using different hardware mechanisms.
Each thread block has a block ID within its grid. A
thread block can be one, two, or three dimensional.
•Grid : A grid is an array of thread blocks launched by
a kernel, that read inputs from global memory; write
results to global memory, and synchronize
dependency among nested kernel calls. A grid will be
described by a user and can be one, two, or three
dimensional.

 Introduction to SYCL

43

SYCL : Heterogeneous Parallel Device
Programming – CUDA & SYCL memory

 Introduction to SYCL

44

SYCL : Heterogeneous Parallel Device Programming –
CUDA kernel & SYCL command queues

 Introduction to SYCL

45

SYCL : Heterogeneous Parallel
Device Programming – CUDA SYCL

•The DPC++ frontend pushes the SYCL code
down several passes and then calls the PTX
backend from LLVM to generate the PTX for the
kernels in the SYCL application.

•The generated PTX ISA is usually comparable
with the native NVCC compiler when using the
same optimization flags.

•The other components are the runtime plugins,
which enable the SYCL runtime to call native
APIs on Nvidia and AMD platforms (CUDA Driver
and HIP respectively). The runtime plugins are
dynamic libraries that are called from the SYCL
runtime when available. The DPC++ compiler
automatically links against the SYCL runtime
from the oneAPI distribution, and then if the
Nvidia and/or AMD plugins are available, they
can be selected at runtime for execution.

 Introduction to SYCL

46

SYCL : Heterogeneous Parallel
Device Programming – CUDA SYCL

•The compiler driver patches enable the DPC++
frontend to build for Nvidia GPUs by identifying
the target triple, and then triggering actions to
build the device image using the existing CUDA
compiler support from the LLVM project.

 Introduction to SYCL

47

SYCL : ParallelSTL
 Intel oneDPL

Parallel API is an implementation of
the C++ standard libraries algorithms
and execution policies, as specified in
the ISO/IEC 14882:2017 standard
(commonly called C++17).

 Introduction to SYCL

48

SYCL : ParallelSTL SYCL and ISO C++
differences

1. oneDPL execution policies only result in
parallel execution if random access iterators
are provided, the execution will remain serial
for other iterator types.

2. Function objects passed in to algorithms
executed with device policies must provide
const-qualified operator(). The SYCL
specification states that writing to such an
object during a SYCL kernel is undefined
behavior.

3. For the following algorithms, par_unseq and unseq policies do
not result in vectorized execution: includes, inplace_merge,
merge, set_difference, set_intersection,
set_symmetric_difference, set_union, stable_partition, unique.

4. The following algorithms require additional O(n) memory
space for parallel execution: copy_if, inplace_merge, partial_sort,
partial_sort_copy, partition_copy, remove, remove_if, rotate,
sort, stable_sort, unique, unique_copy.

 Introduction to SYCL

49

SYCL : ParallelSTL execution policy vs
std::execution::

Links with C++
std::execution::parallel_unsequenced_policy
Implies parallel execution on SIMD safe
execution

 Introduction to SYCL

50

SYCL : ParallelSTL ranges vs std::ranges::

Links with C++
std::ranges::views::all

(Range Adaptors)

Links with C++
std::ranges::views::reverse

(Range Adaptors)

 Introduction to SYCL

51

SYCL : ParallelSTL miscellaneous vs std::

Links with C++ std::iterator

Links with C++ std::swap

 Introduction to SYCL

52

SYCL : Adaptive CPP /hipSYCL

SSCP – single pass compilation

SMCP – Multi pass compilation

 Introduction to SYCL

53

SYCL : Adaptive CPP /hipSYCL
(std::par)

Links with C++ std::transform

Links with C++ std::replace_copy

Links with C++ std::for_each_n

 Custom Kernels in SYCL

54

Custom Kernels : Blocked CUDA
Reduce
https://godbolt.org/z/nPfrGGvd4

 Custom Kernels in SYCL

55

Custom Kernels : Softmax
Activation

The softmax activation function transforms the
raw outputs of the neural network into a vector of
probabilities, essentially a probability distribution
over the input classes.

 Custom Kernels in SYCL

56

Custom Kernels : Softmax
Activation Kernel (CUDA)

 Custom Kernels in SYCL

57

Custom Kernels : Softmax
Activation Kernel (SYCL)

 DPC++ Toolkit

58

DPC++ Toolkit

 DPC++ Toolkit

59

 DPC++ Toolkit

60

Steps to migrate sample project

- Git clone Syclomatic repository
(https://github.com/oneapi-src/SYCLomatic)

- Build SYCLomatic for Linux

- Source oneAPI

- Use “c2s” or “dpct” command to migrate cuda
project or files (Use “c2s --help” for options).
The most common option is :

-

- The source CUDA folders (containing .cuh or
.cu) will be migrated to named sycl destination
(or “dpct_output” if –out-root is not specified).
.cuh is transformed to .dp.hpp and .cu to
.dp.cpp

- Incremental migration is enabled by default
but is switchable with the
“—no-incremental-migration” option.

- Has options to add experimental features to
pick up salient headers inside sycl.

- Source oneAPI

 DPC++ Toolkit

61

User defined Migration

•Default migration rules. A set of built-in
migration rules used by the tool for all migrations.
•Optional predefined migration rules. A set of
predefined migration rules that can optionally be
used for migration. Available predefined migration
rules are in the extensions/opt_rules folder on the
installation path of the tool.
•User-defined migration rules. Custom
migration rules defined by the user. User-defined
migration rules extend the migration capability of
Intel® DPC++ Compatibility Tool and can be used
to target the migration of specific CUDA syntax to
specific SYCL syntax.

 DPC++ Toolkit

62

 Performance Benchmarking

63

 Performance Benchmarking

64

 Performance Benchmarking

65

Llama 3 (Meta) Benchmark on ARC
770

 References

66

Code For the Talk: (OS)
- https://github.com/abhilash1910/ISO-CPP-SYCL-Compiler-Conference/ (GH: abhilash1910)
- https://github.com/oneapi-src/oneAPI-samples
- https://oneapi-src.github.io/oneDPL
- https://github.com/AdaptiveCpp/AdaptiveCpp
- https://github.com/intel/llvm
- https://github.com/triSYCL

Some resource for oneAPI/SYCL

- https://intel.github.io/llvm-docs/
- https://www.intel.com/content/www/us/en/docs/oneapi/code-samples-dpcpp/2023-1.html
- https://www.intel.com/content/www/us/en/docs/oneapi/optimization-guide-gpu
- https://www.intel.com/content/www/us/en/docs/dpcpp-cpp-compiler/developer-guide-reference
- https://www.intel.com/content/www/us/en/developer/articles/technical
- https://www.intel.com/content/www/us/en/developer/articles/technical/transfer-learning-with-tensorflow-on-arc-gpus.ht

ml

https://github.com/abhilash1910/ISO-CPP-SYCL-Compiler-Conference/
https://github.com/oneapi-src/oneAPI-samples
https://oneapi-src.github.io/oneDPL
https://github.com/intel/llvm
https://intel.github.io/llvm-docs/
https://www.intel.com/content/www/us/en/docs/oneapi/code-samples-dpcpp/2023-1.html
https://www.intel.com/content/www/us/en/docs/oneapi/optimization-guide-gpu
https://www.intel.com/content/www/us/en/docs/dpcpp-cpp-compiler/developer-guide-reference
https://www.intel.com/content/www/us/en/developer/articles/technical
https://www.intel.com/content/www/us/en/developer/articles/technical/transfer-learning-with-tensorflow-on-arc-gpus.html
https://www.intel.com/content/www/us/en/developer/articles/technical/transfer-learning-with-tensorflow-on-arc-gpus.html

67

Conclusion

SYCL and DPC++ provide tools to write high-performance parallel
programs using familiar C++ concepts
•Same language and tools to target CPU, GPU, FPGA
•Understanding how SYCL objects fit together helps to avoid bugs
•DPC++ provides flexible methods to select the right device
•Use lower-level tracing and profiling to debug and optimize

programs

Abhilash Majumder
 AI Frameworks and Compiler

Engineer

 Abhilash.Majumder@intel.com

 GH: https://github.com/abhilash1910

SYCL : Integrated
compiler runtime for
accelerated Deep
Learning

mailto:Abhilash.Majumder@intel.com

 Custom Kernels in SYCL

69

Custom Kernels : Convolution
Kernel (SYCL)

 Custom Kernels in SYCL

70

Custom Kernels : Convolution
Kernel (CUDNN)

 Custom Kernels in SYCL

71

 Pytorch

 Custom Kernels in SYCL

72

 Pytorch

SYCL

Cmake

Pytorch runtime

 Custom Kernels in SYCL

73

Transformers

Transformers architecture is used in creation of
almost all large language models, vision or
multimodal models in deep learning. And in
majority of the cases, python is used to implement
the logic of transformers.

It consists of 4 fundamental layers:

- Positional Encoding Embeddings
- Self Attention (Multi head self attention)
- Layer Normalization
- Feed Forward Layers with Activation (NL)

We will design the transformer architecture using
SYCL kernels for each individual component and
link with pytorch runtime for ease of frontend
usability.
(https://github.com/abhilash1910/ISO-CPP-SYCL-
Compiler-Conference/tree/main/sycl_with_pytorch
/)

