
Complex
Rate-Limiting is easy

with Bucket4j

@MaximBartkov

maxgalayoutop@gmail.com

Speaker Maxim Bartkov

About the speaker

More than 8 years in Java

Co-Author Bucket4j library

Co-Author book "Spring Rest Building
Java Microservices and Cloud Applications"

Author of scientific publications

Write articles for Java community

What this talk is about

What this talk is about

What rate-limiting is

What this talk is about

What rate-limiting is

Why sometimes we should use rate-limiting
on application-level

What this talk is about

What rate-limiting is

Why sometimes we should use rate-limiting
on application-level

Main areas to use it

What this talk is about

What rate-limiting is

Why sometimes we should use rate-limiting
on application-level

Why Bucket4j

Main areas to use it

Map legend

Bandwidth == Limit

Multi-Bandwidth == Set of limits

Application level == In java code

What rate-limiting is

The main areas to use rate-limiting

To protect our system from external
requests

The main areas to use rate-limiting

To protect our system from external
requests

To realize contract requirements (using
external API as an example)

The main areas to use rate-limiting

/API/FRIENDS

BUSINESSBASIC PREMIUM

/API/USERS/{ID}

/API/POSTS

Сontract requirements

The main areas to use rate-limiting

/API/FRIENDS

BUSINESSBASIC PREMIUM

/API/USERS/{ID}

/API/POSTS

1000/hour

10000/day

300/hour

2000/day

120/hour

1200/day

Сontract requirements

The main areas to use rate-limiting

/API/FRIENDS

BUSINESSBASIC PREMIUM

/API/USERS/{ID}

/API/POSTS

1000/hour

10000/day

300/hour

2000/day

240/hour

2400/day

120/hour

1200/day

2000/hour

20000/day

600/hour

4000/day

Сontract requirements

The main areas to use rate-limiting

/API/FRIENDS

BUSINESSBASIC PREMIUM

/API/USERS/{ID}

/API/POSTS

1000/hour

10000/day

300/hour

2000/day

240/hour

2400/day

120/hour

1200/day

2000/hour

20000/day

4000/hour

40000/day

720/hour

7200/day

600/hour

4000/day

1800/hour

12000/day

Сontract requirements

The main areas to use rate-limiting

To protect our system from external
requests

To realize contract requirements (using
external API as an example)

To recognize fraud/anomaly detection

The main areas to use rate-limiting

To protect our system from external
requests

To realize contract requirements (using
external API as an example)

To recognize fraud/anomaly detection

To protect an external system from us

The Token
Bucket
algorithm

Bucket

 Refiller
Consumer

The Token Bucket - code example

The Token Bucket - code example

The Token Bucket - code example

The main advantage of the
Token Bucket algorithm

The main advantage

The main advantage

Volume of Bucket (maximum possible count of tokens) - 8 bytes (long)

8 bytes

The main advantage

Current count of tokens in a bucket - 8 bytes (long)

8 bytes

8 bytes

The main advantage

Count of nanoseconds for generating a new token - 8 bytes (long)

8 bytes

8 bytes

8 bytes

The main advantage

Last time refill in nanoseconds - 8 bytes (long)

8 bytes

8 bytes

8 bytes

8 bytes

The main advantage

Header of object - 12 bytes (default object weight for 64-bit JDK)

8 bytes

8 bytes

8 bytes

8 bytes

12 bytes

The main advantage

Padded to a multiple of 8 - 4 bytes (an object should have a weighted
multiple of 8 bytes in 64-bit JDK)

8 bytes

8 bytes

8 bytes

8 bytes

12 bytes

4 bytes

The main advantage
Volume of Bucket (maximum possible count of tokens) - 8 bytes (long)

Current count of tokens in a bucket - 8 bytes (long)

Count of nanoseconds for generating a new token - 8 bytes (long)

Header of object - 12 bytes (default object weight for 64-bit JDK)

Padded to a multiple of 8 - 4 bytes (an object should have
a weighted multiple of 8 bytes in 64-bit JDK)

In total: 48 bytes

Last time refill in nanoseconds - 8 bytes (long)

"Why should we think about
memory in Java?"

Rate-Limiting on Application level ?

What ???

Situations to use on application level

Situations to use on application level
To manage limits from Java

Situations to use on application level
To manage limits from Java

To implement the complex limits

Situations to use on application level
To manage limits from Java

To implement the complex limits

Rebalance limits

Situations to use on application level
To manage limits from Java

To implement the complex limits

Rebalance limits

Monitoring limits

Situations to use on application level
To manage limits from Java

To implement the complex limits

Rebalance limits

Monitoring limits

Simple application

Situations to use on application level
To manage limits from Java

To implement the complex limits

Rebalance limits

Monitoring limits

For receiving detailed info about limits

Simple application

About the
Bucket4j
library

Bucket4j - the most popular library
 in Java-World for realizing rate-limiting features

Every month Bucket4j downloads up to
250,000 times from Maven Central.

Contained in 3500 dependencies on GitHub.

Used in Kubernetes Java client,
JHipster, Atlassian, Twitch, e.t.c

The Token Bucket - code example

Basic functionality (Main Rate-Limiting API)

Opportunity to work with multi-bandwidth management

Specifying initial amount of tokens

Turning-off the refill greediness

Blocking API

Scheduler API

Distributed facilities

Asynchronous API

Apache Ignite integration

Infinispan integration

Hazelcast integration

JCache integration

DynamoDB integration

Oracle Coherence integration

Redis integration

MySQL integration

PostgreSQL integration
Framework to implement work
with your custom database

Advanced
Monitoring API

Diagnostic API

On-the-fly configuration replacement API

Modeling time API

Batching API

How to start work with Bucket4j

Simple Code Example

Multi-Bandwidth Code Example

Improvement of the algorithm

Improvement of the algorithm

Improvement of the algorithm

Improvement of the algorithm

Improvement of the algorithm

Distributed Code Example

Advanced
Features

Monitoring API

Monitoring API

Consumed tokens

Monitoring API

Consumed tokens

Rejected tokens

Monitoring API

Consumed tokens

Rejected tokens

Delayed nanos (Scheduler API)

Parked nanos (Blocking API)

On interrupted (Blocking API)

Monitoring
API

Code example

Monitoring API

How it works in practice

On-the-fly configuration replacement

On-the-fly configuration replacement

Use cases

On-the-fly configuration replacement

Change limits of tariffications

Use cases

On-the-fly configuration replacement

Change limits of tariffications

Change limits to call on external API

Use cases

On-the-fly configuration replacement

Types of strategies

On-the-fly configuration replacement
PROPORTIONALLY

On-the-fly configuration replacement
AS_IS

On-the-fly configuration replacement
RESET

On-the-fly configuration replacement
ADDITIVE

Code example

On-the-fly configuration replacement

On-the-fly configuration replacement
How it works

On-the-fly configuration replacement
How it works

On-the-fly configuration replacement
How it works

On-the-fly configuration replacement
How it works

On-the-fly configuration replacement

How it works in practice

Batching API

Batching
API

What it is

Batching
API

What it is

Batching
API

What it is

Batching
API

What it is

Where it need

High Load calls by one key

Batching API

Batching

Delaying

Predicting

Strategies

Code example

How it works in practice

Conclusions

Rate-Limiting - it's easy!

Conclusions

Rate-Limiting - it's easy!

Rate-Limiting is much easier with Bucket4j

Conclusions

Rate-Limiting - it's easy!

Rate-Limiting is much easier with Bucket4j

Rate-Limiting on application level - it's normal!

Thanks for your
attention!

@MaximBartkov

maxgalayoutop@gmail.com

Speaker Maxim Bartkov

