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Bio

• Game development C++

• JavaFX development 
C++/Java

• Delightex – multiplatform 
Java/C++/ObjC/JavaScript

• Huawei



Outline of the talk
1. Hello world demo: desktop + web (kirillp.github.io)

2. Overview of technologies for portable development

3. Reasons for Java multiplatform

4. Rich examples

5. Commons & Differences between platforms

6. Project modules and structure

7. JNI on web and on iPhone

8. Performance 

9. Alternatives overview.

10.Link to Github project

11. Q&A.



Demo time

http://kirillp.github.io

http://kirillp.github.io/


Reasons for Java multiplatform

• Reduces technology diversity

• Reduces codebase

• Requires less people: usually, classic app development process 
requires dedicated engineers to work on different platforms

• Improves development workflow



Overview of technologies for 

portable Java compilation

• Google GWT was pioneer here – it is a transpiler

• Transpiler –text to text: converts Java to JS

• Problems

• you have to distribute sources in JARs 

• does not support Kotlin



Java AOT compilation

• AOT: Closed World model – no dynamic class loading

• TeaVM – Java / Kotlin (bytecode) AOT compiler 

targets: JavaScript, WASM, C

• GraalVM – Java / Kotlin (bytecode) AOT to 

Native exe or  dll (.dylib, .so)

Apple arm targets



Rich examples

• Delightex CoSpaces EDU – in prod for over 5 years

• Educational app with rich 3D Graphics, Lighting, Physics and Scripting 

• 22k Classes, 145k methods

• Huawei SuduEditor - in development

• A text editor using ANTLR parsing engine for code highlighting

• 600 + 500 Classes (two threads), 10K methods

• https://github.com/SuduIDE/sudu-editor

https://github.com/SuduIDE/sudu-editor


Common in all platforms
• UI and View compose

• WebGL (angle) for composition and rendering

• Canvas for offscreen Text and SVG shaping

• UI events

• I/O http, file – with some limitations on WEB

• Multithreading - with some WEB specifics: 
deep copy or transferable



Differences between platforms

• No reflection support

• very limited reflection capabilities on GraalVM

• no reflection for Web in TeaVM

• no WeakHashMap on Web 

• no synchronous IO API on UI thread 



Differences between platforms

• Multithreading on Web is tricky

• Code and classes are not shared between threads, 
you cannot send Runnable or a class instance

• Messaging: deep copy is slow, transfer is fast but

• Sender loses control over transferable objects: 
array.length == 0 after transfer on sender side



Project modules structure
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Linking platform app
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JNI and “native” with GraalVM
• GraalVM supports

• classic JNI (slow)

• @CFunction annotated C-functions – much faster

• @CEntryPoint to call Java from native



JNI and “native” on web
• For Web “native” == call to JavaScript using JSObject or @JSBody

• WebAssembly integration works great (C++, Rust, etc)

https://kirillp.github.io#wasm

https://kirillp.github.io/#wasm


JNI and “native” on iPhone
• On iPhone only GraalVM as JVM currently possible

• No need to use JNI, instead we can use 

• @CFunction to call ObjC from Java

• @CEntryPoint to call Java from ObjC

• Objects lifetime: “Objective-C Automatic Reference Counting”

• id objc_getClass(const char *name);

• SEL sel_getUid(const char *str);

• id objc_msgSend(id, SEL, …);



Performance

• JS is about 5x times slower on ANTLR parsing tasks

• JS is not always so slow



Alternatives overview

• GWT3

• google/j2cl

• https://github.com/mirkosertic/Bytecoder

• https://github.com/i-net-software/JWebAssembly

https://github.com/mirkosertic/Bytecoder
https://github.com/i-net-software/JWebAssembly


GitHub project links

Open sourced under MIT

https://github.com/SuduIDE/sudu-editor

https://kirillp.github.io

https://github.com/SuduIDE/sudu-editor
https://kirillp.github.io/


Thank you


