
@Arkanoid pkirill+jp@gmail.com

Fully Multiplatform Pure Java

Development for Desktop, Web,

Android and iOS

Kirill
Prazdnikov
Huawei

Kirill
Prazdnikov

@Arkanoid

Bio

• Game development C++

• JavaFX development
C++/Java

• Delightex – multiplatform
Java/C++/ObjC/JavaScript

• Huawei

Outline of the talk
1. Hello world demo: desktop + web (kirillp.github.io)

2. Overview of technologies for portable development

3. Reasons for Java multiplatform

4. Rich examples

5. Commons & Differences between platforms

6. Project modules and structure

7. JNI on web and on iPhone

8. Performance

9. Alternatives overview.

10.Link to Github project

11. Q&A.

Demo time

http://kirillp.github.io

http://kirillp.github.io/

Reasons for Java multiplatform

• Reduces technology diversity

• Reduces codebase

• Requires less people: usually, classic app development process
requires dedicated engineers to work on different platforms

• Improves development workflow

Overview of technologies for

portable Java compilation

• Google GWT was pioneer here – it is a transpiler

• Transpiler –text to text: converts Java to JS

• Problems

• you have to distribute sources in JARs

• does not support Kotlin

Java AOT compilation

• AOT: Closed World model – no dynamic class loading

• TeaVM – Java / Kotlin (bytecode) AOT compiler

targets: JavaScript, WASM, C

• GraalVM – Java / Kotlin (bytecode) AOT to

Native exe or dll (.dylib, .so)

Apple arm targets

Rich examples

• Delightex CoSpaces EDU – in prod for over 5 years

• Educational app with rich 3D Graphics, Lighting, Physics and Scripting

• 22k Classes, 145k methods

• Huawei SuduEditor - in development

• A text editor using ANTLR parsing engine for code highlighting

• 600 + 500 Classes (two threads), 10K methods

• https://github.com/SuduIDE/sudu-editor

https://github.com/SuduIDE/sudu-editor

Common in all platforms
• UI and View compose

• WebGL (angle) for composition and rendering

• Canvas for offscreen Text and SVG shaping

• UI events

• I/O http, file – with some limitations on WEB

• Multithreading - with some WEB specifics:
deep copy or transferable

Differences between platforms

• No reflection support

• very limited reflection capabilities on GraalVM

• no reflection for Web in TeaVM

• no WeakHashMap on Web

• no synchronous IO API on UI thread

Differences between platforms

• Multithreading on Web is tricky

• Code and classes are not shared between threads,
you cannot send Runnable or a class instance

• Messaging: deep copy is slow, transfer is fast but

• Sender loses control over transferable objects:
array.length == 0 after transfer on sender side

Project modules structure

Portable
Application code

Portable
Framework code

Platform API
stubs

Project modules structure

Portable
Application code

Portable
Framework code

Platform API
stubs

Project modules structure

Portable
Application code

Portable
Framework code

Platform API
stubs

Project modules structure

Application
entry point

Application
entry point

Portable
Application code

Portable
Framework code

Platform API
stubs

Platform API
implementation

Platform API
implementation

Desktop platform Web platform

Linking platform app

Application
entry point

Portable
Application code

Portable
Framework code

Target platform

Platform API
stubs

Platform API
implementation

JNI and “native” with GraalVM
• GraalVM supports

• classic JNI (slow)

• @CFunction annotated C-functions – much faster

• @CEntryPoint to call Java from native

JNI and “native” on web
• For Web “native” == call to JavaScript using JSObject or @JSBody

• WebAssembly integration works great (C++, Rust, etc)

https://kirillp.github.io#wasm

https://kirillp.github.io/#wasm

JNI and “native” on iPhone
• On iPhone only GraalVM as JVM currently possible

• No need to use JNI, instead we can use

• @CFunction to call ObjC from Java

• @CEntryPoint to call Java from ObjC

• Objects lifetime: “Objective-C Automatic Reference Counting”

• id objc_getClass(const char *name);

• SEL sel_getUid(const char *str);

• id objc_msgSend(id, SEL, …);

Performance

• JS is about 5x times slower on ANTLR parsing tasks

• JS is not always so slow

Alternatives overview

• GWT3

• google/j2cl

• https://github.com/mirkosertic/Bytecoder

• https://github.com/i-net-software/JWebAssembly

https://github.com/mirkosertic/Bytecoder
https://github.com/i-net-software/JWebAssembly

GitHub project links

Open sourced under MIT

https://github.com/SuduIDE/sudu-editor

https://kirillp.github.io

https://github.com/SuduIDE/sudu-editor
https://kirillp.github.io/

Thank you

